Leakage current effects on C-V plots of high-k metal-oxide-semiconductor capacitors

Author(s):  
Y. Lu ◽  
S. Hall ◽  
L. Z. Tan ◽  
I. Z. Mitrovic ◽  
W. M. Davey ◽  
...  
Author(s):  
Dong Gun Kim ◽  
Cheol Hyun An ◽  
Sanghyeon Kim ◽  
Dae Seon Kwon ◽  
Junil Lim ◽  
...  

Atomic layer deposited TiO2- and Al2O3-based high-k gate insulator (GI) were examined for the Ge-based metal-oxide-semiconductor capacitor application. The single-layer TiO2 film showed a too high leakage current to be...


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 720
Author(s):  
He Guan ◽  
Shaoxi Wang

Au-Pt-Ti/high-k/n-InAlAs metal-oxide-semiconductor (MOS) capacitors with HfO2-Al2O3 laminated dielectric were fabricated. We found that a Schottky emission leakage mechanism dominates the low bias conditions and Fowler–Nordheim tunneling became the main leakage mechanism at high fields with reverse biased condition. The sample with HfO2 (4 m)/Al2O3 (8 nm) laminated dielectric shows a high barrier height ϕB of 1.66 eV at 30 °C which was extracted from the Schottky emission mechanism, and this can be explained by fewer In–O and As–O states on the interface, as detected by the X-ray photoelectron spectroscopy test. These effects result in HfO2 (4 m)/Al2O3 (8 nm)/n-InAlAs MOS-capacitors presenting a low leakage current density of below 1.8 × 10−7 A/cm2 from −3 to 0 V at 30 °C. It is demonstrated that the HfO2/Al2O3 laminated dielectric with a thicker Al2O3 film of 8 nm is an optimized design to be the high-k dielectric used in Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS capacitor applications.


2015 ◽  
Vol 821-823 ◽  
pp. 177-180 ◽  
Author(s):  
Chiaki Kudou ◽  
Hirokuni Asamizu ◽  
Kentaro Tamura ◽  
Johji Nishio ◽  
Keiko Masumoto ◽  
...  

Homoepitaxial layers with different growth pit density were grown on 4H-SiC Si-face substrates by changing C/Si ratio, and the influence of the growth pit density on Schottky barrier diodes and metal-oxide-semiconductor capacitors were investigated. Even though there were many growth pits on the epi-layer, growth pit density did not affect the leakage current of Schottky barrier diodes and lifetime of constant current time dependent dielectric breakdown. By analyzing the growth pit shape, the aspect ratio of the growth pit was considered to be the key factor to the leakage current of the Schottky barrier diodes and the lifetime of metal-oxide-semiconductor capacitors.


Sign in / Sign up

Export Citation Format

Share Document