Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films

2012 ◽  
Vol 30 (3) ◽  
pp. 031504 ◽  
Author(s):  
L. Rogström ◽  
M. P. Johansson ◽  
N. Ghafoor ◽  
L. Hultman ◽  
M. Odén
1994 ◽  
Vol 361 ◽  
Author(s):  
V.A. Alyoshin ◽  
E.V. Sviridov ◽  
V.I.M. Hukhortov ◽  
I.H. Zakharchenko ◽  
V.P. Dudkevich

ABSTRACTSurface and cross-section relief evolution of ferroelectric epitaxial (Ba,Sr)TiO3 films rf-sputtered on (001) HgO crystal cle-avage surface versus the oxygen worKing gas pressure P and subst-rate temperature T were studied. Specific features of both three-dimensional and two-dimensional epitaxy mechanisms corresponding to various deposition conditions were revealed. Difference between low and high P-T-value 3D epitaxy was established. The deposition of films with mirror-smooth surfaces and perfect interfaces is shown to be possible.


1990 ◽  
Vol 192 ◽  
Author(s):  
L. Magafas ◽  
D. Girginoudi ◽  
N. Georgoulas ◽  
A. Thanailakis

ABSTRACTThe dependence of chemical composition, structure and optoelectronic properties of sputtered a-SiC:H thin films on substrate temperature, Ts, and hydrogen flow rate has been studied. The films are amorphous for the growth conditions used in this work. The chemical composition of the alloys is very little influenced by the Ts, whereas the hydrogen content and the optical absorption coefficient depends strongly on Ts and hydrogen flow rate.


2020 ◽  
Vol 90 (12) ◽  
pp. 1971
Author(s):  
А.Р. Шугуров ◽  
А.В. Панин

The paper considers current conceptions of generation of mechanical stresses in epitaxial, polycrystalline and amorphous films during their growth and under different external actions. The mechanism of stress generation in geteroepitaxial films due to misfit in crystal lattices of the film and substrate is described. The relation between arising of the misfit stress in heterostructures and variation of their growth mode is shown. The mechanisms of generation of compressive and tensile stresses in polycrystalline films caused by nucleation and coalescence of islands at the beginning of their growth are considered. Different aspects of evolution of intrinsic stresses in continuous films are discussed in dependence of their deposition conditions, chemical composition, microstructure and mechanical properties. Special attention is given to consideration of generation mechanisms of intrinsic stresses in thin films concerned with formation of pint defects, incorporation of impurities and phase transformations during deposition. Factors leading to arising extrinsic stresses in thin films during their storage and operation are described in details.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-659-Pr8-666 ◽  
Author(s):  
O. Yu. Gorbenko ◽  
I. E. Graboy ◽  
A. A. Bosak ◽  
V. A. Amelichev ◽  
A. Yu. Ganin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 724
Author(s):  
Tong Li ◽  
Masaya Ichimura

Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.


2011 ◽  
Vol 192 (1) ◽  
pp. 693-698 ◽  
Author(s):  
M. Radecka ◽  
E. Pamula ◽  
A. Trenczek-Zajac ◽  
K. Zakrzewska ◽  
A. Brudnik ◽  
...  

2011 ◽  
Vol 172-174 ◽  
pp. 863-868
Author(s):  
Anna Sypień ◽  
Andrzej Piątkowski ◽  
Paweł Zięba

The paper presents the results of studies on the microstructure, chemical composition and mechanical properties of the Ni/SnAuCu/Ni interconnections obtained due to the conventional soldering at 300 °C for different times and subsequent aging at 150 °C. The EDX microanalysis allowed to detect at the Ni/solder interface the (Ni,Cu,Au)3Sn4phase which transformed to (Cu,Ni,Au)6Sn5after longer time of soldering. In the central part of the interconnection AuSn4brittle phase was present. This phase was responsible for the significant decrease of the shear strength in the joints subjected to aging at 150 °C for 1000h, 1500 hours. The fracture behavior of such joints appeared to be caused partly by the coalescence of the microvoids in the bulk solder, cleavage of η-phase grains and decohesion at the interface.


Sign in / Sign up

Export Citation Format

Share Document