Influence of surface material on the boron chloride density in inductively coupled discharges

1999 ◽  
Vol 17 (6) ◽  
pp. 3218-3224 ◽  
Author(s):  
G. A. Hebner ◽  
M. G. Blain ◽  
T. W. Hamilton
Author(s):  
J. P. Benedict ◽  
R. M. Anderson ◽  
S. J. Klepeis

Ion mills equipped with flood guns can perform two important functions in material analysis; they can either remove material or deposit material. The ion mill holder shown in Fig. 1 is used to remove material from the polished surface of a sample for further optical inspection or SEM ( Scanning Electron Microscopy ) analysis. The sample is attached to a pohshing stud type SEM mount and placed in the ion mill holder with the polished surface of the sample pointing straight up, as shown in Fig 2. As the holder is rotating in the ion mill, Argon ions from the flood gun are directed down at the top of the sample. The impact of Argon ions against the surface of the sample causes some of the surface material to leave the sample at a material dependent, nonuniform rate. As a result, the polished surface will begin to develop topography during milling as fast sputtering materials leave behind depressions in the polished surface.


2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-399-Pr5-402
Author(s):  
V. E. Fortov ◽  
A. P. Nefedov ◽  
V. A. Sinel'shchikov ◽  
A. V. Zobnin ◽  
A. D. Usachev

2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


Sign in / Sign up

Export Citation Format

Share Document