Evaluation of strain relaxation in GaAsP/GaAs multilayer structure grown on misoriented GaAs substrate

1993 ◽  
Author(s):  
Jerzy Sass
1998 ◽  
Vol 83 (10) ◽  
pp. 5137-5149 ◽  
Author(s):  
R. S. Goldman ◽  
K. L. Kavanagh ◽  
H. H. Wieder ◽  
S. N. Ehrlich ◽  
R. M. Feenstra

2007 ◽  
Vol 124-126 ◽  
pp. 127-130
Author(s):  
Sook Hyun Hwang ◽  
Yu Mi Park ◽  
Hoon Ha Jeon ◽  
Kyung Seok Noh ◽  
Jae Kyu Kim ◽  
...  

We have grown delta-doped In0.5Ga0.5As /In0.5Al0.5As heterostructures on GaAs substrate applying with InxAl1-xAs compositional graded-step buffers, called metamorphic structures, grown by molecular beam epitaxy. Three types of buffer layers with different compositional gradients and thicknesses have designed to investigate the influence of the strain relaxation process. We characterized the samples by using transmission electron microscopy, triple-axis X-ray diffraction and Hall measurement. Two samples with different compositional gradient show almost same results in electrical properties. On the other hand, it is found that samples with different step thicknesses had shown the large differences in epilayer tilt and mosaic spread in the step-graded buffers. These results indicate that there exists an interrelation between the strain-relaxed buffer and 2DEG transport properties.


1992 ◽  
Vol 70 (10-11) ◽  
pp. 838-842
Author(s):  
P. Maigné ◽  
A. P. Roth ◽  
C. Desruisseaux ◽  
D. Coulas

The structural properties of partially relaxed InxGa1−xAs layers grown on (100) GaAs substrates have been investigated, using high-resolution X-ray diffraction, in order to better understand the mechanisms responsible for the relaxation of the mismatch strain. From symmetric [400] reflections recorded as functions of the azimuthal angle [Formula: see text], the (100) InGaAs planes are found to be tilted with respect to the (100) GaAs substrate planes. The tilt magnitude is first seen to decrease then to increase with layer thickness. The direction of the tilt changes from [01-1] to [00-1] in the range of thickness investigated. From [422] asymmetric reflections, the average in-plane lattice parameter, the indium composition as well as the percentage of relaxation can be measured. Our values for relaxation are in qualitative agreement with the Dodson and Tsao model of strain relaxation (Appl. Phys. Lett. 51, 1710 (1987)). In addition, our data show an anisotropy in residual strain along <011> directions. This anisotropy increases with the amount of strain relieved and changes the crystal symmetry of the cell from tetragonal to monoclinic. This monoclinic symmetry can be characterized by an angle β that measures the angle between 90° and the inner angles of the new crystallographic cell. As for the anisotropy in residual strain, |3 increases with the amount of strain relieved. Correlations between tilt magnitude and tilt direction with the formation of 60° type dislocations are discussed.


1992 ◽  
Vol 263 ◽  
Author(s):  
L.J. Schowalter ◽  
A.P. Taylor ◽  
J. Petruzzello ◽  
J. Gaines ◽  
D. Olego

ABSTRACTIt is generally observed that strain relaxation, which occurs by misfit dislocation formation, in lattice-mismatched heteroepitaxial layers is accompanied by the formation of threading dislocations. However, our group and others have observed that strain-relaxed epitaxial layers of In1−xGaxAs on GaAs substrates can be grown without the formation of threading dislocations in the epitaxial layer. We have been able to grow strain-relaxed layers up to 13% In concentration without observable densities of threading dislocations in the epilayer but do observe a large number of dislocations pushed into the GaAs substrate. The ability to grow strain-relaxed, lattice-mismatched heteroepitaxial layers has important practical applications. We have succeeded in growing dislocation-free layers of ZnSe on appropriately lattice-matched layers of In1−xGaxAs.


2017 ◽  
Vol 470 ◽  
pp. 108-112
Author(s):  
Ł. Gelczuk ◽  
G. Jóźwiak ◽  
M. Moczała ◽  
P. Dłużewski ◽  
M. Dąbrowska-Szata ◽  
...  

Author(s):  
Pham V. Huong ◽  
Stéphanie Bouchet ◽  
Jean-Claude Launay

Microstructure of epitaxial layers of doped GaAs and its crystal growth dynamics on single crystal GaAs substrate were studied by Raman microspectroscopy with a Dilor OMARS instrument equipped with a 1024 photodiode multichannel detector and a ion-argon laser Spectra-Physics emitting at 514.5 nm.The spatial resolution of this technique, less than 1 μm2, allows the recording of Raman spectra at several spots in function of thickness, from the substrate to the outer deposit, including areas around the interface (Fig.l).The high anisotropy of the LO and TO Raman bands is indicative of the orientation of the epitaxial layer as well as of the structural modification in the deposit and in the substrate at the interface.With Sn doped, the epitaxial layer also presents plasmon in Raman scattering. This fact is already very well known, but we additionally observed that its frequency increases with the thickness of the deposit. For a sample with electron density 1020 cm-3, the plasmon L+ appears at 930 and 790 cm-1 near the outer surface.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


Author(s):  
M. E. Twigg ◽  
B. R. Bennett ◽  
J. R. Waterman ◽  
J. L. Davis ◽  
B. V. Shanabrook ◽  
...  

Recently, the GaSb/InAs superlattice system has received renewed attention. The interest stems from a model demonstrating that short period Ga1-xInxSb/InAs superlattices will have both a band gap less than 100 meV and high optical absorption coefficients, principal requirements for infrared detector applications. Because this superlattice system contains two species of cations and anions, it is possible to prepare either InSb-like or GaAs-like interfaces. As such, the system presents a unique opportunity to examine interfacial properties.We used molecular beam epitaxy (MBE) to prepare an extensive set of GaSb/InAs superlattices grown on an GaSb buffer, which, in turn had been grown on a (100) GaAs substrate. Through appropriate shutter sequences, the interfaces were directed to assume either an InSb-like or GaAs-like character. These superlattices were then studied with a variety of ex-situ probes such as x-ray diffraction and Raman spectroscopy. These probes confirmed that, indeed, predominantly InSb-like and GaAs-like interfaces had been achieved.


Author(s):  
J.M. Bonar ◽  
R. Hull ◽  
R. Malik ◽  
R. Ryan ◽  
J.F. Walker

In this study we have examined a series of strained heteropeitaxial GaAs/InGaAs/GaAs and InGaAs/GaAs structures, both on (001) GaAs substrates. These heterostructures are potentially very interesting from a device standpoint because of improved band gap properties (InAs has a much smaller band gap than GaAs so there is a large band offset at the InGaAs/GaAs interface), and because of the much higher mobility of InAs. However, there is a 7.2% lattice mismatch between InAs and GaAs, so an InxGa1-xAs layer in a GaAs structure with even relatively low x will have a large amount of strain, and misfit dislocations are expected to form above some critical thickness. We attempt here to correlate the effect of misfit dislocations on the electronic properties of this material.The samples we examined consisted of 200Å InxGa1-xAs layered in a hetero-junction bipolar transistor (HBT) structure (InxGa1-xAs on top of a (001) GaAs buffer, followed by more GaAs, then a layer of AlGaAs and a GaAs cap), and a series consisting of a 200Å layer of InxGa1-xAs on a (001) GaAs substrate.


Sign in / Sign up

Export Citation Format

Share Document