Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

Author(s):  
Brad A. Hartl ◽  
Henry Hirschberg ◽  
Laura Marcu ◽  
Simon R. Cherry
Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Beatriz Müller Nunes Souza ◽  
Juliana Guerra Pinto ◽  
André Henrique Correia Pereira ◽  
Alejandro Guillermo Miñán ◽  
Juliana Ferreira-Strixino

Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.


2021 ◽  
Vol 14 (7) ◽  
pp. 603
Author(s):  
Vanesa Pérez-Laguna ◽  
Isabel García-Luque ◽  
Sofía Ballesta ◽  
Antonio Rezusta ◽  
Yolanda Gilaberte

The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.


Author(s):  
Shiqi Hu ◽  
Bin Huang ◽  
Yumei Pu ◽  
Chengwan Xia ◽  
Qian Zhang ◽  
...  

In this report, a new Thermally activated delayed fluorescent(TADF) molecule [2-(4-triphenylvinyl-phenyl)-anthraquinone (TPE-AQ)] was synthesized. This nanomaterial has satisfactory photostability. In vitro, it was indicated that these TADF nanoparticles (NPs) were...


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1176
Author(s):  
Vanesa Pérez-Laguna ◽  
Yolanda Barrena-López ◽  
Yolanda Gilaberte ◽  
Antonio Rezusta

Candidiasis is very common and complicated to treat in some cases due to increased resistance to antifungals. Antimicrobial photodynamic therapy (aPDT) is a promising alternative treatment. It is based on the principle that light of a specific wavelength activates a photosensitizer molecule resulting in the generation of reactive oxygen species that are able to kill pathogens. The aim here is the in vitro photoinactivation of three strains of Candida spp., Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258, using aPDT with different sources of irradiation and the photosensitizer methylene blue (MB), alone or in combination with chlorhexidine (CHX). Irradiation was carried out at a fluence of 18 J/cm2 with a light-emitting diode (LED) lamp emitting in red (625 nm) or a white metal halide lamp (WMH) that emits at broad-spectrum white light (420–700 nm). After the photodynamic treatment, the antimicrobial effect is evaluated by counting colony forming units (CFU). MB-aPDT produces a 6 log10 reduction in the number of CFU/100 μL of Candida spp., and the combination with CHX enhances the effect of photoinactivation (effect achieved with lower concentration of MB). Both lamps have similar efficiencies, but the WMH lamp is slightly more efficient. This work opens the doors to a possible clinical application of the combination for resistant or persistent forms of Candida infections.


2021 ◽  
Vol 14 (3) ◽  
pp. 229
Author(s):  
Yo Shinoda ◽  
Daitetsu Kato ◽  
Ryosuke Ando ◽  
Hikaru Endo ◽  
Tsutomu Takahashi ◽  
...  

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.


2021 ◽  
Vol 22 (15) ◽  
pp. 8106
Author(s):  
Tianming Song ◽  
Yawei Qu ◽  
Zhe Ren ◽  
Shuang Yu ◽  
Mingjian Sun ◽  
...  

Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.


2020 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
César Ray ◽  
Andrés García-Sampedro ◽  
Christopher Schad ◽  
Edurne Avellanal-Zaballa ◽  
Florencio Moreno ◽  
...  

A new approach for the rapid multi-functionalization of BODIPY dyes towards biophotonics is reported. It is based on novel N-BODIPYs, through reactive intermediates with alkynyl groups to be further derivatized by click chemistry. This approach has been exemplified by the development of new dyes for cell bio-imaging, which have proven to successfully internalize into pancreatic cancer cells and accumulate in the mitochondria. The in vitro suitability for photodynamic therapy (PDT) was also analyzed and confirmed our compounds to be promising PDT candidates for the treatment of pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document