Strain-enhanced Ge epitaxial layer on Si-on-quartz wafer for near-infrared photonic devices

Author(s):  
Asahi Degawa ◽  
Moïse Sotto ◽  
Yasuhiko Ishikawa
2019 ◽  
Vol 28 (02) ◽  
pp. 1950015 ◽  
Author(s):  
Huijun Liang ◽  
Qunchao Ma ◽  
Jian Liu ◽  
Xinwei Shi ◽  
Gongjin Yang ◽  
...  

A cuprous oxide (Cu2O) thin film was prepared by radio-frequency (RF) magnetron sputtering. The crystal structure, linear transmission spectrum and film thickness were characterized by X-ray diffraction (XRD), ultraviolet–visible–near infrared (UV–Vis–NIR) absorption spectroscopy and ellipsometry. By performing the pump-probe and [Formula: see text]-scan technique, respectively, nondegenerate and degenerate two-photon absorption (D-TPA) coefficients of the Cu2O thin film at several different excitation wavelengths were experimentally determined. The nondegenerate two-photon absorption (ND-TPA) coefficient always exhibits larger magnitude than the corresponding D-TPA coefficient. In particular, the ND-TPA coefficient shows a maximum value of [Formula: see text][Formula: see text]cm/GW. This study indicates that the cuprous oxide could be a potential material for ultrafast nonlinear photonic devices based on two-photon absorption due to its large ND-TPA coefficient.


2020 ◽  
Vol 3 (4) ◽  
pp. 3513-3522 ◽  
Author(s):  
Zhenhong Wang ◽  
Hongbo Li ◽  
Mulin Luo ◽  
Tenghui Chen ◽  
Xuefeng Xia ◽  
...  

2004 ◽  
Vol 846 ◽  
Author(s):  
G. Subramania ◽  
J. M. Rivera

ABSTRACTWe demonstrate the fabrication of a three-dimensional woodpile photonic crystal in the near-infrared regime using a layer-by-layer approach involving electron-beam lithography and spin-on-glass planarization. Using this approach we have shown that we can make structures with lattice spacings as small as 550 nm with silicon as well as gold thus allowing for fabrication of photonic crystals with omnidirectional gap in the visible and near-IR. As a proof of concept we performed optical reflectivity and transmission measurements on a silicon structure which reveal peaks and valleys expected for a photonic band gap structure. The approach described here can be scaled down to smaller lattice constants (down to ∼400 nm) and can also be used with a variety of materials (dielectric and metallic) thus enabling rapid prototyping full three-dimensional photonic bandgap based photonic devices in the visible.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Milan M. Milošević ◽  
Weining Man ◽  
Geev Nahal ◽  
Paul J. Steinhardt ◽  
Salvatore Torquato ◽  
...  

AbstractWe introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results. We also report results for passive device elements, including waveguides and resonators, which are seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. We show that the hyperuniform-disordered platform enables improved compactness, enhanced energy efficiency, and better temperature stability compared to the silicon photonics devices based on rib and strip waveguides.


Laser Physics ◽  
2021 ◽  
Vol 31 (12) ◽  
pp. 126207
Author(s):  
Fangjie Wang ◽  
Xiaoxu Chen ◽  
Sikun Zhou ◽  
Qiongqiong Gu ◽  
Hao Zhou ◽  
...  

Abstract Silicon photonic devices have great potential for photocommunication, and silicon-based photodetectors have attracted wide attention. Here, we report an on-chip integrated microfiber–silicon–graphene hybrid structure photodetector that can operate in the visible and near-infrared ranges. The detector has a responsivity of ∼136 mA W−1 at 808 nm and a rise time of ∼1.1 μs. At a reverse bias of 5 V, we achieved a responsivity of ∼1350 mA W−1. Our device provides an option for on-chip integration.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 10 ◽  
Author(s):  
Carolina Romero ◽  
Javier García Ajates ◽  
Feng Chen ◽  
Javier R. Vázquez de Aldana

Crystalline materials are excellent substrates for the integration of compact photonic devices benefiting from the unique optical properties of these materials. The technique of direct inscription with femtosecond lasers, as an advantage over other techniques, has opened the door to the fabrication of true three-dimensional (3D) photonic devices in almost any transparent substrate. Depressed-cladding waveguides have been demonstrated to be an excellent and versatile platform for the integration of 3D photonic circuits in crystals. Here, we present the technique that we have developed to inscribe tapered depressed-cladding waveguides with a circular section for the control of the modal behavior. As a proof of concept, we have applied the technique to fabricate structures in Nd:YAG crystal that efficiently change the modal behavior from highly multimodal to monomodal, in the visible and near infrared, with reduction factors in the waveguide radius of up to 4:1. Our results are interesting for different devices such as waveguide lasers, frequency converters or connectors between external devices with different core sizes.


Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3645-3654
Author(s):  
Zhenhong Wang ◽  
Jia Guo ◽  
Yue Zhang ◽  
Jun Liu ◽  
Joice Sophia Ponraj ◽  
...  

AbstractGermanium phosphide (GeP), a rising star of novel two-dimensional (2D) material composed of Group IV–V elements, has been extensively studied and applied in photonics thanks to its broadband optical absorption, strong light–matter interaction and flexible bandgap structure. Here, we show the strong nonlinear optical (NLO) properties of 2D GeP nanoflakes in the broadband range with open-aperture Z-scan technique to explore the performance of 2D GeP microfiber photonic devices (GMPDs) in near-infrared (near-IR) and mid-infrared (mid-IR) ultrafast photonics. Our results suggest that employing the GMPD as an optical device in an erbium-doped fiber laser (EDFL) system results in ultrashort pulses and rogue waves (RWs) at 1.55 μm. Likewise, by the incorporation of GMPD into a thulium-doped fiber laser (TDFL) system, stable ultrashort pulse operation is also achieved at 2.0 μm. We expect these findings to be an excellent GMPD that can be applied in mode-locked fiber lasers to open up new avenues for its development and application in ultrafast photonics.


2011 ◽  
Vol 33 (7) ◽  
pp. 1066-1070 ◽  
Author(s):  
R. Dahal ◽  
J.Y. Lin ◽  
H.X. Jiang ◽  
J.M. Zavada

2018 ◽  
Vol 24 (4) ◽  
pp. 1-6 ◽  
Author(s):  
Jie Zhou ◽  
Qingyang Du ◽  
Peipeng Xu ◽  
Yang Zhao ◽  
Ruiqiang Lin ◽  
...  

Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 69 ◽  
Author(s):  
Gustavo F. B. Almeida ◽  
Sabrina N. C. Santos ◽  
Jonathas P. Siqueira ◽  
Jessica Dipold ◽  
Tobias Voss ◽  
...  

Gallium nitride (GaN) has been established as a promising candidate for integrated electro-optic and photonic devices, aiming at applications from optical switching to signal processing. Studies of its optical nonlinearities, however, lack spectral coverage, especially in the telecommunications range. In this study, we measured the two-photon absorption coefficient (β) and the nonlinear index of refraction (n2) of GaN from the visible to the near-infrared by using femtosecond laser pulses. We observed an increase of β from (1.0 ± 0.2) to (2.9 ± 0.6) ×10−11 m/W as the photon energy approached the band gap from 1.77 up to 2.25 eV (700–550 nm), while n2 varied from (90 ± 30) ×10−20 up to (265 ± 80) ×10−20 m2/W within a broad spectral range, from 0.80 up to 2.25 eV (1550–550 nm). The results were modeled by applying a theory based on the second-order perturbation theory and the Kramers-Kronig relationship for direct-gap semiconductors, which are important for the development of GaN-based nonlinear photonic devices.


Sign in / Sign up

Export Citation Format

Share Document