Optical atomic magnetometer networks to search for exotic physics

Author(s):  
Derek F. Kimball
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arik Bergman ◽  
Robert Duggan ◽  
Kavita Sharma ◽  
Moshe Tur ◽  
Avi Zadok ◽  
...  

AbstractThe exotic physics emerging in non-Hermitian systems with balanced distributions of gain and loss has recently drawn a great deal of attention. These systems exhibit phase transitions and exceptional point singularities in their spectra, at which eigen-values and eigen-modes coalesce and the overall dimensionality is reduced. So far, these principles have been implemented at the expense of precise fabrication and tuning requirements, involving tailored nano-structured devices with controlled optical gain and loss. In this work, anti-parity-time symmetric phase transitions and exceptional point singularities are demonstrated in a single strand of single-mode telecommunication fibre, using a setup consisting of off-the-shelf components. Two propagating signals are amplified and coupled through stimulated Brillouin scattering, enabling exquisite control over the interaction-governing non-Hermitian parameters. Singular response to small-scale variations and topological features arising around the exceptional point are experimentally demonstrated with large precision, enabling robustly enhanced response to changes in Brillouin frequency shift.


2018 ◽  
Vol 68 (1) ◽  
pp. 105-129 ◽  
Author(s):  
Kendall Mahn ◽  
Chris Marshall ◽  
Callum Wilkinson

Neutrino interactions with nuclei have been the subject of intense interest during the last 15 years. Current and future measurements of neutrino oscillation and exotic physics use order 0.1–10 GeV neutrinos on a range of nuclear targets (12C,16O,40Ar). As the precision of these experiments has increased, information from their detectors and dedicated experiments has indicated deficiencies in the modeling of neutrino interactions on nuclear targets. Here, we present the current state of knowledge about neutrino–nucleus interactions, the challenge of extracting the cross section of these processes, and current experimental puzzles in the field. We also look forward to new and novel measurements and future efforts that seek to resolve these questions.


1996 ◽  
Vol 10 (08) ◽  
pp. 863-955 ◽  
Author(s):  
A. TARAPHDER ◽  
RAHUL PANDIT ◽  
H. R. KRISHNAMURTHY ◽  
T. V. RAMAKRISHNAN

We review the remarkable properties, including superconductivity, charge-density-wave ordering and metal–insulator transitions, of lead- and potassium-doped barium bismuthate. We will discuss some of the early theoretical studies of these systems. Our recent theoretical work, on the negative-U, extended-Hubbard model for these systems, will also be described. Both the large- and intermediate-U regimes of this model were examined, using mean-field and random-phase approximations, particularly with a view to fitting various experimental properties of these bismuthates. On the basis of our studies, we point out possibilities for exotic physics in these systems. We also emphasize the different consequences of electronic and phonon-mediated mechanisms for the negative U. We show that, for an electronic mechanism, the semiconducting phases of these bismuthates must be unique, with their transport properties dominated by charge±2eCooperon bound states. This can explain the observed difference between the optical and transport gaps. We propose other experimental tests for this novel mechanism of charge transport and comment on the effects of disorder.


2014 ◽  
pp. 115-118
Author(s):  
D.F. JACKSON KIMBALL ◽  
S. PUSTELNY ◽  
M. POSPELOV ◽  
M.P. LEDBETTER ◽  
N. LEEFER ◽  
...  

Author(s):  
Marta Spinelli ◽  
Gianni Bernardi ◽  
Mario G Santos

Abstract Global (i.e. sky-averaged) 21 cm signal experiments can measure the evolution of the universe from the Cosmic Dawn to the Epoch of Reionization. These measurements are challenged by the presence of bright foreground emission that can be separated from the cosmological signal if its spectrum is smooth. This assumption fails in the case of single polarization antennas as they measure linearly polarized foreground emission - which is inevitably Faraday rotated through the interstellar medium. We investigate the impact of Galactic polarized foregrounds on the extraction of the global 21 cm signal through realistic sky and dipole simulations both in a low frequency band from 50 to 100 MHz, where a 21 cm absorption profile is expected, and in a higher frequency band (100 − 200 MHz). We find that the presence of a polarized contaminant with complex frequency structure can bias the amplitude and the shape of the reconstructed signal parameters in both bands. We investigate if polarized foregrounds can explain the unexpected 21 cm Cosmic Dawn signal recently reported by the EDGES collaboration. We find that unaccounted polarized foreground contamination can produce an enhanced and distorted 21 cm absorption trough similar to the anomalous profile reported by Bowman et al. (2018), and whose amplitude is in mild tension with the assumed input Gaussian profile (at ∼1.5σ level). Moreover, we note that, under the hypothesis of contamination from polarized foreground, the amplitude of the reconstructed EDGES signal can be overestimated by around 30%, mitigating the requirement for an explanation based on exotic physics.


2014 ◽  
Vol 1 ◽  
pp. 5 ◽  
Author(s):  
Richard W. Ziolkowski

Metamaterials are artificial materials formed by embedding highly subwavelength inclusions in a host medium, which yield homogenized permittivity and permeability values. By design they offer the promise of exotic physics responses not generally available with naturally occurring materials, as well as the ability to tailor their properties to specific applications. The initial years of discovery emphasized confirming many of their exotic properties and exploring their actual potential for science and engineering applications. These seed efforts have born the sweet fruit enjoyed by the current generation of metamaterials scientists and engineers. This review will emphasize the initial investigative forays in the USA that supported and encouraged the development of the metamaterials era and the subsequent recognition that they do have significant advantages for practical applications.


2020 ◽  
Author(s):  
Erjian Cheng ◽  
Wei Xia ◽  
Jie Xu ◽  
Chengwei Wang ◽  
Chuanying Xi ◽  
...  

Abstract The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We present ab initio band calculations, electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements on the magnetic semimetal EuAs3, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic (AFM) ground state at low temperature, featuring a pair of massive Dirac points, inverted bands and topological surface states on the (010) surface. Shubnikov-de Haas (SdH) oscillations in the AFM state identify nonzero Berry phase and a negative longitudinal magnetoresistance (n-LMR) induced by the chiral anomaly, confirming the topological nature predicted by band calculations. When magnetic moments are fully polarized by an external magnetic field, an unsaturated and extremely large magnetoresistance (XMR) of ∼ 2×105 % at 1.8 K and 28.3 T is observed, likely arising from topological protection. Consistent with band calculations for the spin-polarized state, four new bands in quantum oscillations different from those in the AFM state are discerned, of which two are topologically protected. Nodal-line structures at the Y point in the Brillouin zone (BZ) are proposed in both the spin-polarized and paramagnetic states, and the latter is proven by ARPES. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs3 provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.


Sign in / Sign up

Export Citation Format

Share Document