2D/2D S-scheme photo-Fenton catalysts with large interfacial contact area for efficient photodegradation of pollutants

Author(s):  
Haifeng Shi ◽  
Wenliang Wang
RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 7188-7197 ◽  
Author(s):  
Lijun Qin ◽  
Ning Yan ◽  
Jianguo Li ◽  
Haixia Hao ◽  
Fengqi Zhao ◽  
...  

The energy performances of nanothermite materials are dependent on the mass transport, diffusion distance, and interfacial contact area between the fuel and the oxidizer.


1993 ◽  
Vol 06 (02) ◽  
pp. 100-104 ◽  
Author(s):  
D. M. Pickles ◽  
C. R. Bellenger

SummaryTotal removal of a knee joint meniscus is followed by osteoarthritis in many mammalian species. Altered load-bearing has been observed in the human knee following meniscectomy but less is known about biochemical effects of meniscectomy in other species. Using pressure sensitive paper in sheep knee (stifle) joints it was found that, for comparable loads, the load-bearing area on the medial tibial condyle was significantly reduced following medial meniscectomy. Also, for loads of between 50 N and 500 N applied to the whole joint, the slope of the regression of contact area against load was much smaller. Following medial meniscectomy, the ability to increase contact area as load increased was markedly reduced.The load bearing area on the medial tibial condyle was reduced following meniscectomy.


2012 ◽  
Vol 40 (2) ◽  
pp. 124-150
Author(s):  
Klaus Wiese ◽  
Thiemo M. Kessel ◽  
Reinhard Mundl ◽  
Burkhard Wies

ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.


1995 ◽  
Vol 23 (4) ◽  
pp. 238-255 ◽  
Author(s):  
E. H. Sakai

Abstract The contact conditions of a tire with the road surface have a close relationship to various properties of the tire and are among the most important characteristics in evaluating the performance of the tire. In this research, a new measurement device was developed that allows the contact stress distribution to be quantified and visualized. The measuring principle of this device is that the light absorption at the interface between an optical prism and an evenly ground or worn rubber surface is a function of contact pressure. The light absorption can be measured at a number of points on the surface to obtain the pressure distribution. Using this device, the contact pressure distribution of a rubber disk loaded against a plate was measured. It was found that the pressure distribution was not flat but varied greatly depending upon the height and diameter of the rubber disk. The variation can be explained by a “spring” effect, a “liquid” effect, and an “edge” effect of the rubber disk. Next, the measurement and image processing techniques were applied to a loaded tire. A very high definition image was obtained that displayed the true contact area, the shape of the area, and the pressure distribution from which irregular wear was easily detected. Finally, the deformation of the contact area and changes in the pressure distribution in the tread rubber block were measured when a lateral force was applied to the loaded tire.


2018 ◽  
Vol 14 (1) ◽  
pp. 6057-6061 ◽  
Author(s):  
Padmanaban M S ◽  
J Sreerambabu

A piled raft foundation consists of a thick concrete slab reinforced with steel which covers the entire contact area of the structure, in which the raft is supported by a group of piles or a number of individual piles. Bending moment on raft, differential and average settlement, pile and raft geometries are the influencing parameters of the piled raft foundation system. In this paper, a detailed review has been carried out on the issues on the raft foundation design. Also, the existing design procedure was explained.


Sign in / Sign up

Export Citation Format

Share Document