scholarly journals Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright

Author(s):  
Sanyang Han
Nature ◽  
2020 ◽  
Vol 587 (7835) ◽  
pp. 594-599
Author(s):  
Sanyang Han ◽  
Renren Deng ◽  
Qifei Gu ◽  
Limeng Ni ◽  
Uyen Huynh ◽  
...  

1983 ◽  
Vol 44 (C3) ◽  
pp. C3-1383-C3-1385
Author(s):  
S. Oostra ◽  
P. De Lange ◽  
R. J.J. Visser
Keyword(s):  

2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


2018 ◽  
Vol 24 (1) ◽  
pp. 62-77 ◽  
Author(s):  
Sayed Sartaj Sohrab ◽  
Sherif Aly El-Kafrawy ◽  
Zeenat Mirza ◽  
Mohammad Amjad Kamal ◽  
Esam Ibraheem Azhar

Background: The MERS-CoV is a novel human coronavirus causing respiratory syndrome since April 2012. The replication of MERS-CoV is mediated by ORF 1ab and viral gene activity can be modulated by RNAi approach. The inhibition of virus replication has been documented in cell culture against multiple viruses by RNAi approach. Currently, very few siRNA against MERS-CoV have been computationally designed and published. Methods: In this review, we have discussed the computational designing and delivery of potential siRNAs. Potential siRNA can be designed to silence a desired gene by considering many factors like target site, specificity, length and nucleotide content of siRNA, removal of potential off-target sites, toxicity and immunogenic responses. The efficient delivery of siRNAs into targeted cells faces many challenges like enzymatic degradation and quick clearance through renal system. The siRNA can be delivered using transfection, electroporation and viral gene transfer. Currently, siRNAs delivery has been improved by using advanced nanotechnology like lipid nanoparticles, inorganic nanoparticles and polymeric nanoparticles. Conclusion: The efficacy of siRNA-based therapeutics has been used not only against many viral diseases but also against non-viral diseases, cancer, dominant genetic disorders, and autoimmune disease. This innovative technology has attracted researchers, academia and pharmaceuticals industries towards designing and development of highly effective and targeted disease therapy. By using this technology, effective and potential siRNAs can be designed, delivered and their efficacy with toxic effects and immunogenic responses can be tested against MERS-CoV.


2019 ◽  
Vol 25 (37) ◽  
pp. 3917-3926
Author(s):  
Sajjad Molavipordanjani ◽  
Seyed Jalal Hosseinimehr

Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid and polymeric nanoparticles and their application in tumor targeting.


Author(s):  
Ewa Baranowska-Wójcik

AbstractThe recent years have seen a significant interest in the applications of nanotechnology in various facets of our lives. Due to their increasingly widespread use, human exposure to nanoparticles (NPs) is fast becoming unavoidable. Among the wide group of nanoparticles currently employed in industry, titanium dioxide nanoparticles, TiO2 NPs, are particularly popular. Due to its white colour, TiO2 is widely used as a whitening food additive (E 171). Yet, there have been few studies aimed at determining its direct impact on bacteria, while the available data suggest that TiO2 NPs may influence microbiota causing problems such as inflammatory bowel disease, obesity, or immunological disorders. Indeed, there are increasing concerns that its presence may lead to intestinal barrier impairment, including dysbiosis of intestinal microbiota. This article aims to present an overview of studies conducted to date with regard to the impact of TiO2 NPs on human microbiota as well as factors that can affect the same. Such information is necessary if we are to conclusively determine the potential toxicity of inorganic nanoparticles.


2021 ◽  
Vol 22 (14) ◽  
pp. 7456
Author(s):  
Mousa A. Alghuthaymi ◽  
Aftab Ahmad ◽  
Zulqurnain Khan ◽  
Sultan Habibullah Khan ◽  
Farah K. Ahmed ◽  
...  

Rapid developments in the field of plant genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems necessitate more detailed consideration of the delivery of the CRISPR system into plants. Successful and safe editing of plant genomes is partly based on efficient delivery of the CRISPR system. Along with the use of plasmids and viral vectors as cargo material for genome editing, non-viral vectors have also been considered for delivery purposes. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, and protein- and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have a decreased immune response, an advantage over viral vectors, and offer additional flexibility in their design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. This review is dedicated to describing the delivery methods of CRISPR system into plants with emphasis on the use of non-viral vectors.


Sign in / Sign up

Export Citation Format

Share Document