3D Jones matrix layer-by-layer scanning linear and circular birefringence maps of polycrystalline polyethylene films

2021 ◽  
Author(s):  
Olexander V. Dubolazov ◽  
O. Ushenko ◽  
A. Motrich ◽  
M. Gavrylyak ◽  
I. Soltys ◽  
...  
2017 ◽  
Vol 25 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Carmen Fernández Ayuso ◽  
Alejandro Arribas Agüero ◽  
Jose A. Plaza Hernández ◽  
Antonio Bódalo Santoyo ◽  
Elisa Gómez Gómez

“Layer by layer” technology was used to create transparent, thin and high barrier polyethylene films to use in food packaging. These films were made by inserting successive layers of polyacrylamide and montmorillonite (Cloisite Na+, non-organic modification) grown onto a low density polyethylene (LDPE) film substrate submitted to corona treatment. Excellent oxygen permeability results were reached with only 9 bilayers, with a reduction of 99.92%, compared to the pure polyethylene. This allowed the oxygen barrier film to change from poor to high (3.66 cm3/m2·day), with a total thickness of 48 microns, due to the structure formed over the film to create a tortuous path for oxygen molecules. Optical properties were analysed, showing a ≥92% transparency in all samples. Thermal stability of polyethylene was slightly improved and this was attributed to nanoclays presence forming an insulating layer. The result of this research is a thin structured film which is a good candidate for common barrier films replacement in food packaging thanks to its high oxygen barrier capacity, optical transparency, microwaveability and recyclability.


Author(s):  
M.A. Parker ◽  
K.E. Johnson ◽  
C. Hwang ◽  
A. Bermea

We have reported the dependence of the magnetic and recording properties of CoPtCr recording media on the thickness of the Cr underlayer. It was inferred from XRD data that grain-to-grain epitaxy of the Cr with the CoPtCr was responsible for the interaction observed between these layers. However, no cross-sectional TEM (XTEM) work was performed to confirm this inference. In this paper, we report the application of new techniques for preparing XTEM specimens from actual magnetic recording disks, and for layer-by-layer micro-diffraction with an electron probe elongated parallel to the surface of the deposited structure which elucidate the effect of the crystallographic structure of the Cr on that of the CoPtCr.XTEM specimens were prepared from magnetic recording disks by modifying a technique used to prepare semiconductor specimens. After 3mm disks were prepared per the standard XTEM procedure, these disks were then lapped using a tripod polishing device. A grid with a single 1mmx2mm hole was then glued with M-bond 610 to the polished side of the disk.


Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


Author(s):  
G. M. Brown ◽  
D. F. Brown ◽  
J. H. Butler

The term “gel”, in the jargon of the plastics film industry, may refer to any inclusion that produces a visible artifact in a polymeric film. Although they can occur in any plastic product, gels are a principle concern in films where they detract from the cosmetic appearance of the product and may compromise its mechanical strength by acting as local stress concentrators. Many film gels are small spheres or ellipsoids less than one millimeter in diameter whereas other gels are fusiform-shaped and may reach several centimeters in length. The actual composition of gel inclusions may vary from miscellaneous inorganics (i.e. glass and mineral particles) and processing additives to heavily oxidized, charred or crosslinked polymer. The most commonly observed gels contain polymer differing from the bulk of the sample in its melt viscosity, density or molecular weight.Polymeric gels are a special concern in polyethylene films. Over the years and with the examination of a variety of these samples three predominant polymeric species have been observed: density gels which have different crystallinity than the film; melt-index gels in which the molecular weight is different than the film and crosslinked gels which are comprised of crosslinked polyethylene.


Author(s):  
S. Likharev ◽  
A. Kramarenko ◽  
V. Vybornov

At present time the interest is growing considerably for theoretical and experimental analysis of back-scattered electrons (BSE) energy spectra. It was discovered that a special angle and energy nitration of BSE flow could be used for increasing a spatial resolution of BSE mode, sample topography investigations and for layer-by layer visualizing of a depth structure. In the last case it was shown theoretically that in order to obtain suitable depth resolution it is necessary to select a part of BSE flow with the directions of velocities close to inverse to the primary beam and energies within a small window in the high-energy part of the whole spectrum.A wide range of such devices has been developed earlier, but all of them have considerable demerit: they can hardly be used with a standard SEM due to the necessity of sufficient SEM modifications like installation of large accessories in or out SEM chamber, mounting of specialized detector systems, input wires for high voltage supply, screening a primary beam from additional electromagnetic field, etc. In this report we present a new scheme of a compact BSE energy analyzer that is free of imperfections mentioned above.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 29-35 ◽  
Author(s):  
PEDRAM FATEHI ◽  
LIYING QIAN ◽  
RATTANA KITITERAKUN ◽  
THIRASAK RIRKSOMBOON ◽  
HUINING XIAO

The application of an oppositely charged dual polymer system is a promising approach to enhance paper strength. In this work, modified chitosan (MCN), a cationic polymer, and carboxymethyl cellulose (CMC), an anionic polymer, were used sequentially to improve paper strength. The adsorption of MCN on cellulose fibers was analyzed via polyelectrolyte titration. The formation of MCN/CMC complex in water and the deposition of this complex on silicon wafers were investigated by means of atomic force microscope and quasi-elastic light scattering techniques. The results showed that paper strength was enhanced slightly with a layer-by-layer assembly of the polymers. However, if the washing stage, which was required for layer-by-layer assembly, was eliminated, the MCN/CMC complex was deposited on fibers more efficiently, and the paper strength was improved more significantly. The significant improvement was attributed to the extra development of fiber bonding, confirmed further by scanning electron microscope observation of the bonding area of fibers treated with or without washing. However, the brightness of papers was somewhat decreased by the deposition of the complex on fibers. Higher paper strength also was achieved using rapid drying rather than air drying.


Sign in / Sign up

Export Citation Format

Share Document