Science Article “Airborne Transmission of Respiratory Viruses”

2021 ◽  
Vol 59 (9) ◽  
pp. 735-735
Author(s):  
Dan MacIsaac
2020 ◽  
Vol 81 (9) ◽  
pp. 1-9
Author(s):  
Hazel R O'Mahony ◽  
Daniel S Martin

Guidance regarding appropriate use of personal protective equipment in hospitals is in constant flux as research into SARS-COV-2 transmission continues to develop our understanding of the virus. The risk associated with procedures classed as ‘aerosol generating’ is under constant debate. Current guidance is largely based on pragmatic and cautious logic, as there is little scientific evidence of aerosolization and transmission of respiratory viruses associated with procedures. The physical properties of aerosol particles which may contain viable virus have implications for the safe use of personal protective equipment and infection control protocols. As elective work in the NHS is reinstated, it is important that the implications of the possibility of airborne transmission of the virus in hospitals are more widely understood. This will facilitate appropriate use of personal protective equipment and help direct further research into the true risks of aerosolization during these procedures to allow safe streamlining of services for staff and patients.


Science ◽  
2021 ◽  
Vol 373 (6558) ◽  
Author(s):  
Chia C. Wang ◽  
Kimberly A. Prather ◽  
Josué Sznitman ◽  
Jose L. Jimenez ◽  
Seema S. Lakdawala ◽  
...  

2020 ◽  
pp. 1420326X2098016
Author(s):  
Hyunjun Yun ◽  
Jinho Yang ◽  
Ji-Hoon Seo ◽  
Jong-Ryeul Sohn

In recent years, several epidemics by transmissible respiratory viruses have emerged, especially pandemics caused by coronaviruses. The most significant public health emergency may be the COVID-19 pandemic. Identifying the transmission of infectious disease plays an important role in healthcare for protecting and implementing effective measures for public health. However, studies on SARS-CoV-2 transmission dynamics are lacking. Infection with the airborne virus is very important and airborne transmission is likely to cause major problems. However, research on the aerosol route of the virus is very limited. Here, we aimed to present airborne coronavirus detection methods in previous studies and address the importance of methodology for the future. In previous studies on airborne coronavirus, detection methods were different in each study. Therefore, comparison between the airborne virus detected in each study is impossible, and the risk assessment could not be properly analysed due to limitations in applying it as basic data. There is currently a risk assessment for coronavirus, but the risk assessment due to airborne transmission is insufficient. Therefore, recommending accurate guidelines for airborne transmission is difficult. Future research should be conducted to standardize airborne virus detection methods to prevent transmission through rapid risk assessment and monitoring.


2021 ◽  
Author(s):  
Abigail Dommer ◽  
Lorenzo Casalino ◽  
Fiona Kearns ◽  
Mia Rosenfeld ◽  
Nicholas Wauer ◽  
...  

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic- level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.


2021 ◽  
Author(s):  
Liwei Guo ◽  
Ryo Torii ◽  
Ruth Epstein ◽  
John Rubin ◽  
Jonathan P Reid ◽  
...  

Aerosols and droplets generated from expiratory events play a critical role in the transmission of infectious respiratory viruses. Increasingly robust evidence has suggested the crucial role of fine aerosols in airborne transmission of respiratory diseases, which is now widely regarded as an important transmission path of COVID-19. In this report, we used CFD modelling to investigate the efficiency of using portable air purifiers containing HEPA filters to reduce airborne aerosols in hospitals and serve as a potential retrofit mitigation strategy. We used a consulting room to set up our simulations because currently the clearance time between consultations is the controlling factor that limits the patient turnover rate. The results suggest the inlet/suction of the air purifier unit should be lifted above the floor to achieve better clearance efficiency, with up to 40% improvement possible. If multiple air purifiers are used, the combined efficiency can increase to 62%. This work provides practical guidance on a mitigation strategy that can be easily implemented in an expedient, cost-effective and rapid manner, and paves the way for developing more science-informed strategies to mitigate the airborne transmission of respiratory infections in hospitals.


2020 ◽  
Author(s):  
Karina Mueller Brown ◽  
Valerie Le Sage ◽  
Andrea J. French ◽  
Jennifer E. Jones ◽  
Gabriella H. Padovani ◽  
...  

AbstractSecondary bacterial infection, especially with Streptococcus pneumoniae (Spn), is a common complication in fatal and ICU cases of influenza virus infection. During the H1N1 pandemic of 2009 (H1N1pdm09), there was higher mortality in healthy young adults due to secondary bacterial pneumonia, with Spn being the most frequent bacterial species. Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, we used the ferret model to study whether airborne transmission of H1N1pdm09 was influenced by coinfection with two Spn serotypes: type 2 (D39) and type 19F (BHN97). We found that coinfected animals experienced more severe clinical symptoms as well as increased bacterial colonization of the upper respiratory tract. In contrast, we observed that coinfection resulted in reduced airborne transmission of influenza virus. Only 1/3 animals coinfected with D39 transmitted H1N1pdm09 virus to a naïve recipient compared to 3/3 transmission efficiency in animals infected with influenza virus alone. A similar trend was seen in coinfection with BHN97, suggesting that coinfection with Spn reduces influenza virus airborne transmission. The decrease in transmission does not appear to be caused by decreased stability of H1N1pdm09 in expelled droplets in the presence of Spn. Rather, coinfection resulted in decreased viral shedding in the ferret upper respiratory tract. Thus, we conclude that coinfection enhances colonization and airborne transmission of Spn but decreases replication and transmission of H1N1pdm09. Our data points to an asymmetrical relationship between these two pathogens rather than a synergistic one.SignificanceAirborne transmission of respiratory viruses is influenced by many host and environmental parameters. The complex interplay between bacterial and viral coinfections on transmission of respiratory viruses has been understudied. We demonstrate that coinfection with Streptococcus pneumoniae reduces airborne transmission of influenza A viruses by decreasing viral titers in the upper respiratory tract. Instead of implicating a synergistic relationship between bacteria and virus, our work demonstrates an asymmetric relationship where bacteria benefit from the virus but where the fitness of influenza A viruses is negatively impacted by coinfection. The implications of exploring how microbial communities can influence the fitness of pathogenic organisms is a novel avenue for transmission control of pandemic respiratory viruses.


Sign in / Sign up

Export Citation Format

Share Document