Iron Status of Highly Active Adolescents: Evidence of Depleted Iron Stores in Gymnasts

Author(s):  
Naama W. Constantini ◽  
Alon Eliakim ◽  
Levana Zigel ◽  
Michal Yaaron ◽  
Bareket Falk

Much attention has focused on the nutrition and hematological profile of female athletes, especially gymnasts. The few studies on iron status of male adolescent athletes found a low incidence of iron deficiency. The present study investigated the iron status of male and female gymnasts (G) and compared it with athletes of other sports. Subjects were 68 elite athletes (43 M, 25 F) ages 12-18, of four sports: gymnasts (11 M, 12 F), swimmers (11 M, 6 F), tennis players (10 M, 4 F), and table tennis players (11 M, 3 F). All lived in the national center for gifted athletes, trained over 25 hr a week, ate in the same dining room, and shared a similar lifestyle. Mean levels of hemoglobin (Hb), red blood cell indexes, serum ferritin, serum iron, and transferrin were measured in venous blood. There was no difference in mean Rb among gymnasts (G) and nongymnasts (NG). However, Hb was less than 14 g/dL in 45% of M G vs. only 25% in NG, and less than 13 g/dL in 25% of premenarcheal FG vs. 15% in NG. Low transferrin saturation (< 20%) was detected in 18% of M G and 25% of FG vs. 6% and 8% in male and female NG, respectively (p < .05). The percentage of males suffering from low ferritin level (< 20 ng/ml) was twice as high in G (36%) vs. NG (19%), and about 30% in all females. In summary, iron stores were consistently lower in M G vs. NG. Adolescent athletes of both genders, G in particular, are prone to nonanemic iron deficiency, which might compromise their health and athletic performance.

2019 ◽  
Vol 21 (Supplement_M) ◽  
pp. M32-M35 ◽  
Author(s):  
Ewa A Jankowska ◽  
Michał Tkaczyszyn ◽  
Marcin Drozd ◽  
Piotr Ponikowski

Abstract The 2016 ESC/HFA heart failure (HF) guidelines emphasize the importance of identifying and treating iron deficiency (ID) in patients with HF. Iron deficiency can occur in half or more of HF sufferers, depending on age and the phase of the disease. Iron deficiency can be a cause of anaemia, but it is also common even without anaemia, meaning that ID is a separate entity, which should be screened for within the HF population. Although assessment of iron stores in bone marrow samples is the most accurate method to investigate iron status, it is not practical in most HF patients. Levels of circulating iron biomarkers are an easily available alternative; especially, ferritin and transferrin saturation (Tsat). In patients with HF serum ferritin level &lt;100 µg/L (regardless of Tsat value) or between 100 and 299 µg/L with Tsat &lt;20% are considered as recommended criteria for the diagnosis of ID, criteria which have been used in the clinical trials in HF that have led to a recommendation to treat ID with intravenous iron. We discuss the optimal measures of iron biomarkers in patients with HF in order to screen and monitor iron status and introduce some novel ways to assess iron status.


2021 ◽  
Vol 69 (1) ◽  
Author(s):  
Osama M. El-Asheer ◽  
Mary S. Naeem ◽  
Fardos A. Abdel-Hafez ◽  
Madleen A. A. Abdou ◽  
Khalil A. Mohamed

Abstract Background Iron deficiency anemia remains a common cause of anemia in young children. The term iron deficiency without anemia, or the so-called latent iron deficiency, has become increasingly significant as it is not only difficult to identify this condition in non-anemic children, but it also adversely affects neurocognitive development, and unfortunately, some of these effects may be irreversible and not respond to treatment. This cross-sectional study was conducted to evaluate iron status in 68 apparently healthy, non-anemic Egyptian children aged 1–6 years. They were subjected to detailed history-taking, physical examination, complete blood count, and tests for serum iron, total iron binding capacity, serum ferritin, and transferrin saturation. Results Low serum ferritin level and low transferrin saturation were detected in 41.2% and 47% of the children, respectively. Iron deficiency parameters were significantly affected among toddlers aged “1” to “3” years compared with preschool children, and boys were found to be more affected than girls of the same age group. Conclusions A normal hemoglobin level does not exclude iron deficiency, which should be screened in healthy children to prevent the possible long-term effects of iron deficiency on their cognition and mental development.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 357
Author(s):  
Tatjana Pirman ◽  
Ajda Lenardič ◽  
Alenka Nemec Svete ◽  
Simon Horvat

The objective of this study was to compare the effects of >Your< Iron Syrup, a novel oral liquid iron-containing food supplement, with the commonly prescribed iron sulphate (Fe-sulphate) in a mouse model of diet-induced iron deficiency. Standard inbred BALB/cOlaHsd mice were fed low-iron diet for 11 weeks to induce significant decrease in blood haemoglobin and haematocrit and were then supplemented by gavage with either >Your< Iron Syrup or Fe-sulphate for two weeks. In >Your< Iron Syrup group, several markers of iron deficiency, such as serum iron concentration, transferrin saturation and ferritin level were significantly improved in both female and male mice. Fe-sulphate induced similar responses, except that it did not significantly increase iron serum in females and serum ferritin in both sexes. Fe-sulphate significantly increased liver-iron content which >Your< Iron Syrup did not. Transcription of Hamp and selected inflammatory genes in the liver was comparable between the two supplementation groups and with the Control diet group. Some sex-specific effects were noted, which were more pronounced and less variable in males. In conclusion, >Your< Iron Syrup was efficient, comparable and in some parameters superior to Fe-sulphate in improving iron-related parameters without inducing a response of selected liver inflammation markers in a mouse model of diet-induced iron deficiency.


2008 ◽  
Vol 11 (7) ◽  
pp. 737-746 ◽  
Author(s):  
Halimatou Alaofè ◽  
John Zee ◽  
Romain Dossa ◽  
Huguette Turgeon O’Brien

AbstractIron deficiency (ID) is the most prevalent micronutrient deficiency in the world, particularly in developing countries. Blood samples and a qualitative FFQ on Fe- and vitamin C-rich foods were obtained in 180 adolescent girls aged 12 to 17 years living in two boarding schools from south Benin. ID, defined as serum ferritin either <20μg/l or 20–50μg/l, plus two of the following parameters: serum Fe<11μmol/l, total iron-binding capacity>73μmol/l or transferrin saturation<20%, was found in 32% of subjects. Anaemia (Hb<120g/l) was found in 51% of adolescents, while 24% suffered from iron-deficiency anaemia (IDA) (ID and Hb<20g/l). After adjusting for confounding factors (age, mother's and father's occupation, household size) in a logistic regression equation, subjects having a low meat consumption (beef, mutton, pork) (<4 times/week) were more than twice as likely to suffer from ID (OR=2·43; 95% CI 1·72, 3·35;P=0·04). Adolescents consuming less fruits (<4 times/week) also had a higher likelihood of suffering from ID (OR=1·53; 95% CI 1·31, 2·80;P=0·03). Finally, subjects whose meat consumption was low were twice as likely to suffer from IDA (OR=2·24; 95% CI 1·01, 4·96;P=0·04). The prevalence of ID represents an important health problem in these Beninese adolescent girls. A higher consumption of Fe-rich foods and of promoters of Fe absorption (meat factor and vitamin C) is recommended to prevent ID deficiency in these subjects.


PEDIATRICS ◽  
1978 ◽  
Vol 62 (2) ◽  
pp. 246-250

At present, there is no evidence to warrant modification of the recent recommendations of the Committee for the prevention of iron deficiency in infancy.1 The benefits of supplementation seem to outweigh the possibility of iron excess during a period of development characterized by marginal iron stores. Except for the first two months of life, iron stores in children are proportionately much lower than in the adult, and iron balance may be more precarious. Unless carefully controlled clinical studies provide evidence to the contrary, iron fortification of formula and foods seems to provide safe and effective methods for maintaining iron stores and preventing iron deficiency18,35 in infancy. The benefits of prolonged breast-feeding are emphasized not only for the prevention of iron deficiency but also because of the nutritional and immunologic properties of human milk.


2019 ◽  
Vol 7 (2) ◽  
pp. 10-16
Author(s):  
Aditya Mahaseth ◽  
Jay Narayan Shah ◽  
Bikash Nepal ◽  
Biplave Karki ◽  
Jeet Ghimire ◽  
...  

Background and Objectives: Iron Deficiency is the commonest nutritional deficiency worldwide, affecting more than one-third of the population, its association with Heart Failure with or without anemia is of growing interest. As iron supplementation improves prognosis in patients with Heart Failure, Iron Deficiency is an attractive therapeutic target – a hypothesis that has recently been tested in clinical studies. This study is designed to estimate the prevalence and pattern of iron deficiency (ID) in heart failure (HF) with reduced ejection fraction patients with or without anemia. Material and methods: It was a single center hospital based cross sectional observational study. A total of 60 male and female patients with diagnosis of heart failure based on the Framingham Criteria, who gave consent for the study were included. They underwent laboratory evaluation including hemoglobin concentration, serum iron, transferrin saturation percentage, serum ferritin, total iron binding capacity. Serum ferritin <100 μg/l was used to diagnose absolute ID. Functional ID was defined as a serum ferritin level of 100–300 μg/l and a transferrin saturation of <20 %. Anemia was defined as hemoglobin (Hb) <13 g/dl for males and <12 g/dl for females, based on World Health Organization definition. Results: Using the above definitions iron deficiency was found in 28 (46.67%) patients. 36.67% patients had absolute iron deficiency and 10% patients had functional iron deficiency. Females had a higher non statistically significant iron deficiency than males 63.16% vs 39.02%. 15 patients (48.38%) with iron deficiency did not have anemia, and 11 (35.5%) of those patients had absolute iron deficiency. Conclusion: Iron deficiency is prevalent in patients with heart failure and reduced ejection fraction irrespective of anemia and hemoglobin levels. Many of those patients can have functional iron deficiency. Measurement of iron status should be a routine during workup of heart failure patients and further studies are needed to determine the prognostic value of iron status measurement and the influences of treatment of iron deficiency in heart failure patients. Many such trials are now underway.  


1999 ◽  
Vol 45 (12) ◽  
pp. 2191-2199 ◽  
Author(s):  
Anne C Looker ◽  
Mark Loyevsky ◽  
Victor R Gordeuk

Abstract Background: Serum transferrin receptor (sTfR) concentrations are increased in iron deficiency. We wished to examine whether they are decreased in the presence of potential iron-loading conditions, as reflected by increased transferrin saturation (TS) on a single occasion. Methods: We compared sTfR concentrations between 570 controls with normal iron status and 189 cases with increased serum TS on a single occasion; these latter individuals may be potential cases of iron overload. Cases and controls were selected from adults who had been examined in the third National Health and Nutrition Examination Survey (1988–1994) and for whom excess sera were available to perform sTfR measurements after the survey’s completion. Increased TS was defined as &gt;60% for men and &gt;55% for women; normal iron status was defined as having no evidence of iron deficiency, iron overload, or inflammation indicated by serum ferritin, TS, erythrocyte protoporphyrin, and C-reactive protein. Results: Mean sTfR and mean log sTfR:ferritin were ∼10% and 24% lower, respectively, in cases than in controls (P &lt;0.002). Cases were significantly more likely to have an sTfR value &lt;2.9 mg/L, the lower limit of the reference interval, than were controls (odds ratio = 1.8; 95% confidence interval, 1.04–2.37). Conclusion: Our results support previous studies that suggested that sTfR may be useful for assessing high iron status in populations.


2019 ◽  
Vol 15 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Saroj Thapa ◽  
Madhab Lamsal ◽  
Sanjay Kumar Sah ◽  
Rajendra Kumar Chaudhari ◽  
Basanta Gelal ◽  
...  

Background: Iron deficiency is the most common nutritional deficiency in the world. The relation between thyroid hormones and iron status is bidirectional. The aim of this study was to assess iron nutrition status and evaluate its relationship with thyroid hormone profile among children of Eastern Nepal. Methods: A  community based cross-sectional study was conducted in eastern Nepal. A total of 200 school children aged 6-12 years were recruited after taking informed consent from their guardians. Blood samples were collected and assayed for free thyroid hormones (fT3 and fT4), thyroid stimulating hormone (TSH), serum iron, total iron binding capacity (TIBC) concentration and percentage transferrin saturation was calculated. Results: The mean serum iron and TIBC was 74.04 µg/dl and 389.38 µg/dl respectively. The median transferring saturation was 19.21%. The overall prevalence of iron deficiency (Transferrin saturation < 16%) was 34% (n=68). The mean concentration of fT3 and fT4 was 2.87 pg/ml and 1.21 ng/dl respectively, while the median TSH concentration was 3.03 mIU/L. Median TSH concentration in iron deficient group (3.11 µg/dl) and iron sufficient group (2.91 µg/dl) was not significantly different. Among iron deficient children 5.9% had   subclinical hypothyroidism (n=4). Iron status indicators were not significantly correlated with thyroid profile parameters in the study population. Conclusions: The prevalence of iron deficiency is high and iron   deficiency does not significantly alter the thyroid hormone profile in the study region.


1985 ◽  
Vol 78 (10) ◽  
pp. 838-841
Author(s):  
Hasan I Atrah

Iron, transferrin and ferritin were measured in serum samples from 16 patients with primary hypogammaglobulinemia. Transferrin saturation was low in 12 patients (75%) and serum ferritin was low in 9 patients (56.25%). Both parameters were low, confirming the state of iron deficiency, in 6 patients (37.5%). These figures are highly significant ( P < 0.01) when compared with the prevalence of iron deficiency in the general population. Eight patients were maintained on intravenous immunoglobulin infusions and the rest on intramuscular immunoglobulin injections, their mean serum IgG being 4.4 g/l and 2.6 g/l respectively. There was no difference in the prevalence of iron deficiency between the two groups.


Author(s):  
Iain C. Macdougall

Although erythropoiesis-stimulating agent therapy is the mainstay of renal anaemia management, maintenance of an adequate iron supply to the bone marrow is also pivotal in the process of erythropoiesis. Thus, it is important to be able to detect iron insufficiency, and to treat this appropriately. Iron deficiency may be absolute (when the total body iron stores are exhausted) or functional (when the total body iron stores are normal or increased, but there is an inability to release iron from the stores rapidly enough to provide a ready supply of iron to the bone marrow). Several markers of iron status have been tested, but those of the greatest utility are the serum ferritin, transferrin saturation, and percentage of hypochromic red cells. Measurement of serum hepcidin, which is the master regulator of iron homoeostasis, has to date proved disappointing as a means of detecting iron insufficiency, and none of the available iron markers reliably exclude the need for supplemental iron. Iron may be replaced by either the oral or the intravenous route. In the advanced stages of chronic kidney disease, however, hepcidin is upregulated, and this powerfully inhibits the absorption of iron from the gut. Thus, such patients often require intravenous iron, particularly those on dialysis. Several intravenous (IV) iron preparations are available, and they have in common a core containing an iron salt, surrounded by a carbohydrate shell. The IV iron preparations differ in their kinetics of iron release from the iron–carbohydrate complex. In recent times, several new IV iron preparations have become available, and these allow a greater amount of iron to be given more rapidly as a single administration, without the need for a test dose.


Sign in / Sign up

Export Citation Format

Share Document