Comparing Active, Passive, and Combined Warm-Ups Among Junior Alpine Skiers in −7°C

Author(s):  
Kerry McGawley ◽  
Matt Spencer ◽  
Anna Olofsson ◽  
Erik P. Andersson

Context: Warming up in very cold climates and maintaining an elevated body temperature prior to a race is challenging for snow-sport athletes. Purpose: To investigate the effects of active (ACT), passive (PAS), and a combination of ACT and PAS (COM) warm-ups on maximal physical performance in a subzero environment among snow-sport athletes. Methods: Ten junior alpine skiers completed 3 experimental trials in −7.2 (0.2)°C. The ACT involved 5 minutes of moderate cycling, 3 × 15-second accelerations, a 6-second sprint, 5 countermovement jumps (CMJs), and a 10-minute passive transition phase, while in PAS, participants wore a lower-body heated garment for 24 minutes. In COM, participants completed the active warm-up, then wore the heated garment during the transition phase. Two maximal CMJs and a 90-second maximal isokinetic cycling test followed the warm-up. Results: CMJ performance was likely (P = .150) and very likely (P = .013) greater in ACT and COM, respectively, versus PAS. Average power output during the cycling test was likely (P = .074) greater in ACT and COM versus PAS. Participants felt likely to almost certainly warmer (P < .01) and more comfortable (P = .161) during ACT and COM versus PAS. In addition, participants felt likely warmer (P = .136) and very likely more comfortable (P = .161) in COM versus ACT. Conclusions: COM resulted in significantly improved CMJ performance versus PAS while both ACT and COM led to likely improved 90-second cycling performance. Participants felt significantly warmer during ACT and COM versus PAS and likely warmer in COM versus ACT. Therefore, a combined warm-up is recommended for alpine skiers performing in subzero temperatures.

1999 ◽  
Vol 13 (4) ◽  
pp. 444-457 ◽  
Author(s):  
Bonnie G. Berger ◽  
Robert W. Motl ◽  
Brian D. Butki ◽  
David T. Martin ◽  
John G. Wilkinson ◽  
...  

This study examined changes in mood and performance in response to high-intensity, short-duration overtraining and a subsequent taper. Pursuit cyclists (N = 8) at the United States Olympic Training Center completed the POMS and simulated 4-km pursuit performance tests throughout a six-week period. The six-week period included a baseline week, three weeks of overtraining that consisted primarily of high-intensity interval training, and a two-week taper. Total Mood Disturbance (TMD) scores displayed a quadratic polynomial effect across the three weeks of overtraining (p < .01), with the highest TMD scores occurring in the second week. Average TMD scores were lower during the taper than at baseline (p < .02) and lower at taper than overtraining (p < .0005). Cycling performance (pursuit time and average power output) improved during the three weeks of overtraining; additional improvements were observed during the taper. There were no significant correlations between TMD and performance. However, pursuit time, average power output, and mood disturbance scores were at optimal levels throughout the taper period. These findings suggest that high-intensity, short-duration overtraining may not result in an overtraining syndrome in 4-km pursuit cyclists.


2007 ◽  
Vol 2 (4) ◽  
pp. 377-385 ◽  
Author(s):  
Lars R. McNaughton ◽  
Steve Kenney ◽  
Jason Siegler ◽  
Adrian W. Midgley ◽  
Ric J. Lovell ◽  
...  

Context:Recently, superoxygenated-water beverages have emerged as a new purported ergogenic substance.Purpose:This study aimed to determine the effects of superoxygenated water on submaximal endurance performance.Methods:Eleven active male subjects, VO2max 52.6 ± 4.8 mL · kg−1 · min−1, height 180.0 ± 2.0 cm, weight 76.0 ± 7.0 kg, age 24 ± 1.0 y (mean ± SD), completed a 45-min cycle-ergometry exercise test at 70% of their previously predicted maximal power output with a 10-min rest period, followed by a 15-min time trial (TT). Thirty minutes before the exercise test subjects consumed 15 mL of either superoxygenated water (E) or placebo (P; water mixed with low-chlorine solution). Subjects then completed the test again a week later for the other condition (double-blind, randomized). The physiological variables measured during exercise were VO2, VCO2, respiratory-exchange ratio (RER), VE, PO2, PCO2, blood lactate (bLa–), and heart rate (HR). Mean distance covered and the average power output for the 15-min TT were also measured as performance indicators.Results:There were no significant differences in VO2, VCO2, RER, VE, bLa−, PO2, and HR (P > .05) during the exercise tests. Neither were there any significant improvements in the total distance covered (P 9.01 ± 0.74 km vs E 8.96 ± 0.68 km, P > .05) or the average power output (P 186.7 ± 35.8 W vs E 179.0 ± 25.9 W, P > .05) during the 15-min TT.Conclusion:Based on these results the authors conclude that consuming 15 mL of superoxygenated water does not enhance submaximal or maximal TT cycling performance.


2004 ◽  
Vol 14 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Ben Desbrow ◽  
Sally Anderson ◽  
Jennifer Barrett ◽  
Elissa Rao ◽  
Mark Hargreaves

The effects of a commercial sports drink on performance in high-intensity cycling was investigated. Nine well-trained subjects were asked to complete a set amount of work as fast as possible (time trial) following 24 h of dietary (subjects were provided with food, energy 57.4 ± 2.4 kcal/kg and carbohydrate 9.1 ± 0.4 g/kg) and exercise control. During exercise, subjects were provided with 14 mL/kg of either 6% carbohydrate-electrolyte (CHO-E) solution or carbohydrate-free placebo (P). Results showed that subjects’ performances did not greatly improve (time, 62:34 ± 6:44 min:sec (CHO-E) vs. 62:40 ± 5:35 min:sec (P); average power output, 283.0 ± 25.0 W (CHO-E) vs. 282.9 ± 29.3 W (P), P > 0.05) while consuming the sports drink. It was concluded that CHO-E consumption throughout a 1-h time trial, following a pre-exercise dietary regimen designed to optimize glucose availability, did not improve time or power output to a greater degree than P in well-trained cyclists.


Author(s):  
Alessio Rossi ◽  
Damiano Formenti ◽  
Luca Cavaggioni ◽  
Giampietro Alberti ◽  
Fabio Esposito ◽  
...  

Abstract Background The fact that kinesio tape may be capable to enhance muscle power would qualify it as practical tool to be considered during passive warm-up (WU) or coupled with active WU processes prior to power-based performance. Therefore, the aim of this study was to investigate the single and combined effect of kinesio tape (KT) and WU on sprint cycling performance. Methods In a repeated measure design, fifteen participants underwent six sessions to assess sprint cycling performance involving a combination of three taping conditions (without KT: NoKT; with KT positioned vertically over the thigh muscles KT; with KT positioned horizontally over the thigh muscles: Sham) with two pre-exercise routines (with WU: WU; without WU: NoWU) in a randomized order. Allometric scaling of peak power (PP) and average power (AP) values were considered for each sprint. Results KT-WU demonstrated the highest PP and AP with respect to the other conditions (p < 0.05), except for AP that was similar to Sham-WU (p > 0.05). Moreover, NoKT-NoWU showed the lowest PP and AP with respect to the other conditions (p < 0.05). Conclusions Overall, our findings suggest that kinesio tape might be a possible tool to be combined with an active WU routine, inducing benefit on sprint performance. Moreover, KT may be considered a potential strategy to include within a passive WU, perhaps where an active WU is not feasible. However, as the influence of KT on muscle function is still unclear, our results should not be overinterpreted.


2012 ◽  
Vol 7 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Ernst A. Hansen ◽  
Bent R. Rønnestad ◽  
Geir Vegge ◽  
Truls Raastad

The authors tested whether heavy strength training, including hip-flexion exercise, would reduce the extent of the phase in the crank revolution where negative or retarding crank torque occurs. Negative torque normally occurs in the upstroke phase when the leg is lifted by flexing the hip. Eighteen well-trained cyclists either performed 12 wk of heavy strength training in addition to their usual endurance training (E+S; n = 10) or merely continued their usual endurance training during the intervention period (E; n = 8). The strength training consisted of 4 lower body exercises (3 × 4–10 repetition maximum) performed twice a week. E+S enhanced cycling performance by 7%, which was more than in E (P = .02). Performance was determined as average power output in a 5-min all-out trial performed subsequent to 185 min of submaximal cycling. The performance enhancement, which has been reported previously, was here shown to be accompanied by improved pedaling efficacy during the all-out cycling. Thus, E+S shortened the phase where negative crank torque occurs by ~16°, corresponding to ~14%, which was more than in E (P = .002). In conclusion, adding heavy strength training to usual endurance training in well-trained cyclists improves pedaling efficacy during 5-min all-out cycling performed after 185 min of cycling.


Author(s):  
Alfonso Penichet-Tomas ◽  
Jose M. Jimenez-Olmedo ◽  
Luis Serra Torregrosa ◽  
Basilio Pueo

Postactivation potentiation (PAP) describes an initial muscular activation with a submaximal or maximal load intensity that produces acute improvements in muscle power and performance in subsequent explosive activities. The objective of this study was to compare the effect of different PAP protocols in rowing performance. A crossover design involving seven rowers was used, in which two different PAP protocols were applied: PAP of maximal conditioning contractions (PAP MCC) on a rowing ergometer to provide greater transferability and, thus, enhance the magnitude of PAP stimuli on subsequent rowing performance; and PAP of maximal strength contractions (PAP MSC) in half squat and bench pull exercises, similar to the main exercises in rowing strength training, to perform a 20 s “all-out” test simulating a competition start. Student’s t-test was used to compare means of the variables (p < 0.05). Effect size statistics were calculated using Cohen’s d. The PAP MCC protocol resulted in significant differences, with an extremely large effect size in average power output (p = 0.034, d = 0.98) in the first 3 (p = 0.019, d = 1.15) and first 5 (p = 0.036, d = 0.91) strokes. This group also reached a greater number of strokes (p = 0.049, d = 2.29) and strokes per minute (p = 0.046, d = 1.15). PAP with maximal conditioning contractions in rowing warm-up enhanced subsequent rowing sprint and is an advisable strategy to potentiate performance at the start of rowing competitions and sprint regattas.


2021 ◽  
Vol 11 (16) ◽  
pp. 7417
Author(s):  
Arkaitz Castañeda-Babarro

The Wingate Anaerobic Test (WAT) has been widely used since its creation in 1974. The WAT involves performing a 30 s “all-out” cycling test. The test is currently applied with some modifications, partly due to the evolution of the material used to perform it. The purpose of this text is to act as a guide for the correct use and application of the test, as well as to highlight the importance of controlling many of the variables that may influence its results. Methods: A literature search was conducted in PUBMED/MEDLINE and Web of Science with different combinations of keywords all related to the WAT to obtain a search of 113 papers. Results and discussion: It was observed that variables such as the duration of the test or the resistance used in the cycle ergometer must be adjusted according to the objective and the population evaluated, while others such as the warm-up or the supplementation of different substances can improve performance on the WAT. Conclusions: In order to apply the WAT correctly, variables such as duration, resistance used or warm-up time and intensity must be adjusted according to the evaluated subjects and the aim of the study. Other variables such as position on the bike or equipment used should also be controlled if we want to guarantee its replicability.


2005 ◽  
Vol 23 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Greg Atkinson ◽  
Clare Todd ◽  
Thomas Reilly ◽  
James Waterhouse

2007 ◽  
Vol 32 (6) ◽  
pp. 1082-1088 ◽  
Author(s):  
Hua Lin ◽  
Tom Kwokkeung Tong ◽  
Chuanye Huang ◽  
Jinlei Nie ◽  
Kui Lu ◽  
...  

The effects of inspiratory muscle (IM) warm-up on IM function and on the maximum distance covered in a subsequent incremental badminton-footwork test (FWmax) were examined. Ten male badminton players were recruited to perform identical tests in three different trials in a random order. The control trial did not involve an IM warm-up, whereas the placebo and experimental trials did involve an IM warm-up consisting of two sets of 30-breath manoeuvres with an inspiratory pressure-threshold load equivalent to 15% (PLA) and 40% (IMW) maximum inspiratory mouth pressure, respectively. In the IMW trial, IM function was improved with 7.8% ± 4.0% and 6.9% ± 3.5% increases from control found in maximal inspiratory pressure at zero flow (P0) and maximal rate of P0 development (MRPD), respectively (p < 0.05). FWmax was enhanced 6.8% ± 3.7%, whereas the slope of the linear relationship of the increase in the rating of perceived breathlessness for every minute (RPB/min) was reduced (p < 0.05). Reduction in blood lactate ([La–]b) accumulation was observed when the test duration was identical to that of the control trial (P < 0.05). In the PLA trial, no parameter was changed from control. For the changes (Δ) in parameters in IMW (n = 10), negative correlations were found between ΔP0 and ΔRPB/min (r2 = 0.58), ΔMRPD and ΔRPB/min (r2 = 0.48), ΔRPB/min, and ΔFWmax (r2 = 0.55), but not between Δ[La–]b accumulation and ΔFWmax. Such findings suggest that the IM-specific warm-up improved footwork performance in the subsequent maximum incremental badminton-footwork test. The improved footwork was partly attributable to the reduced breathless sensation resulting from the enhanced IM function, whereas the contribution of the concomitant reduction in [La–]b accumulation was relatively minor.


Sign in / Sign up

Export Citation Format

Share Document