Emotion and Motivation: Attention, Perception, and Action

2000 ◽  
Vol 22 (s1) ◽  
pp. S122-S140 ◽  
Author(s):  
Peter J. Lang

Emotions are organized around 2 basic motivational systems, appetitive and defensive, that evolved from primitive neural circuits in the mammalian brain. The appetitive system is keyed for approach behavior, founded on the preservative, sexual, and nurturant reflexes that underlie pleasant affects; the defense system is keyed for withdrawal, founded on protective and escape reflexes that underlie unpleasant affects. Both systems control attentional processing: Distal engagement by motive-relevant cues prompts immobility and orienting. With greater cue proximity (e.g., predator or prey imminence), neural motor centers supercede, determining overt defensive or consummatory action. In humans, these systems determine affective expression, evaluation behavior, and physiological responses that can be related to specific functional changes in the brain. This theoretical approach is illustrated with psychophysiological and brain imagery studies in which human subjects respond to emotional picture stimuli.

2020 ◽  
Vol 10 (6) ◽  
pp. 350
Author(s):  
Alberto Zani

Traditionally, electroencephalographic (EEG) and event-related brain potentials (ERPs) research on visual attentional processing attempted to account for mental processes in conceptual terms without reference to the way in which they were physically realized by the anatomical structures and physiological processes of the human brain. The brain science level of analysis, in contrast, attempted to explain the brain as an information processing system and to explain mental events in terms of brain processes. Somehow overcoming the separation between the two abovementioned levels of analysis, the cognitive neuroscience level considered how information was represented and processed in the brain. Neurofunctional processing takes place in a fraction of a second. Hence, the very high time resolution and the reliable sensitivity of EEG and ERPs in detecting fast functional changes in brain activity provided advantages over hemodynamic imaging techniques such as positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), as well as over behavioral measures. However, volume conduction and lack of three-dimensionality limited applications of EEG and ERPs per se more than hemodynamic techniques for revealing locations in which brain processing occurs. These limits could only be overcome by subtraction methods for isolating attentional effects that might endure over time in EEG and may be riding even over several different ERP components, and by intracerebral single and distributed electric source analyses as well as the combining of these signals with high-spatial resolution hemodynamic signals (fMRI), both in healthy individuals and clinical patients. In my view, the articles of the Special Issue concerned with “ERP and EEG Markers of Brain Visual Attentional Processing” of the present journal Brain Sciences provide very good examples of all these levels of analysis.


2002 ◽  
Vol 26 (4) ◽  
pp. 225-237 ◽  
Author(s):  
Glenn I. Hatton

Recognition of the importance of glial cells in nervous system functioning is increasing, specifically regarding the modulation of neural activity. This brief review focuses on some of the morphological and functional interactions that take place between astroglia and neurons. Astrocyte-neuron interactions are of special interest because this glia cell type has intimate and dynamic associations with all parts of neurons, i.e., somata, dendrites, axons, and terminals. Activation of certain receptors on astrocytes produces morphological changes that result in new contacts between neurons, along with physiological and functional changes brought about by the new contacts. In response to activation of other receptors or changes in the extracellular microenvironment, astrocytes release neuroactive substances that directly excite or inhibit nearby neurons and may modulate synaptic transmission. Although some of these glial-neuronal interactions have been known for many years, others have been quite recently revealed, but together they are forming a compelling story of how these two major cell types in the brain carry out the complex tasks that mammalian nervous systems perform.


Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fernando R. Fernandez ◽  
Mircea C. Iftinca ◽  
Gerald W. Zamponi ◽  
Ray W. Turner

AbstractT-type calcium channels are important regulators of neuronal excitability. The mammalian brain expresses three T-type channel isoforms (Cav3.1, Cav3.2 and Cav3.3) with distinct biophysical properties that are critically regulated by temperature. Here, we test the effects of how temperature affects spike output in a reduced firing neuron model expressing specific Cav3 channel isoforms. The modeling data revealed only a minimal effect on baseline spontaneous firing near rest, but a dramatic increase in rebound burst discharge frequency for Cav3.1 compared to Cav3.2 or Cav3.3 due to differences in window current or activation/recovery time constants. The reduced response by Cav3.2 could optimize its activity where it is expressed in peripheral tissues more subject to temperature variations than Cav3.1 or Cav3.3 channels expressed prominently in the brain. These tests thus reveal that aspects of neuronal firing behavior are critically dependent on both temperature and T-type calcium channel subtype.


1863 ◽  
Vol 12 ◽  
pp. 671-673

By a new process of investigation, I have succeeded in demonstrating the connexion between the nerve-cells and fibres in the grey matter of the convolutions and in other parts of the mammalian brain, and have followed individual fibres for a much greater distance than can be effected in sections prepared by other processes of investigation which I have tried. In many instances one thick fibre is continuous with one or other extremity of the “cell,” while from its opposite portion from three to six or eight thinner fibres diverge in a direction onwards and outwards. This arrangement is particularly distinct in the grey matter of the sheep’s brain.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150106 ◽  
Author(s):  
Margaret M. McCarthy

Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Alessio Molfino ◽  
Gianfranco Gioia ◽  
Filippo Rossi Fanelli ◽  
Alessandro Laviano

Inflammation characterizes the course of acute and chronic diseases and is largely responsible for the metabolic and behavioral changes occurring during the clinical journey of patients. Robust data indicate that, during cancer, functional modifications within brain areas regulating energy homeostasis contribute to the onset of anorexia, reduced food intake, and increased catabolism of muscle mass and adipose tissue. In particular, functional changes are associated with increased hypothalamic concentration of proinflammatory cytokines, which suggests that neuroinflammation may represent the adaptive response of the brain to peripheral challenges, including tumor growth. Within this conceptual framework, the vagus nerve appears to be involved in conveying alert signals to the hypothalamus, whereas hypothalamic serotonin appears to contribute to triggering catabolic signals.


1997 ◽  
Vol 84 (2) ◽  
pp. 627-661 ◽  
Author(s):  
Peter Brugger

This article updates Tune's 1964 review of variables influencing human subjects' attempts at generating random sequences of alternatives. It also covers aspects not included in the original review such as randomization behavior by patients with neurological and psychiatric disorders. Relevant work from animal research (spontaneous alternation paradigm) is considered as well. It is conjectured that Tune's explanation of sequential nonrandomness in terms of a limited capacity of short-term memory can no longer be maintained. Rather, interdependence among consecutive choices is considered a consequence of an organism's natural susceptibility to interference. Random generation is thus a complex action which demands complete suppression of any rule-governed behavior. It possibly relies on functions of the frontal lobes but cannot otherwise be “localized” to restricted regions of the brain. Possible developments in the field are briefly discussed, both with respect to basic experiments regarding the nature of behavioral nonrandomness and to potential applications of random-generation tasks.


Author(s):  
Lucas da Costa Campos ◽  
Raphael Hornung ◽  
Gerhard Gompper ◽  
Jens Elgeti ◽  
Svenja Caspers

AbstractThe morphology of the mammalian brain cortex is highly folded. For long it has been known that specific patterns of folding are necessary for an optimally functioning brain. On the extremes, lissencephaly, a lack of folds in humans, and polymicrogyria, an overly folded brain, can lead to severe mental retardation, short life expectancy, epileptic seizures, and tetraplegia. The construction of a quantitative model on how and why these folds appear during the development of the brain is the first step in understanding the cause of these conditions. In recent years, there have been various attempts to understand and model the mechanisms of brain folding. Previous works have shown that mechanical instabilities play a crucial role in the formation of brain folds, and that the geometry of the fetal brain is one of the main factors in dictating the folding characteristics. However, modeling higher-order folding, one of the main characteristics of the highly gyrencephalic brain, has not been fully tackled. The effects of thickness inhomogeneity in the gyrogenesis of the mammalian brain are studied in silico. Finite-element simulations of rectangular slabs are performed. The slabs are divided into two distinct regions, where the outer layer mimics the gray matter, and the inner layer the underlying white matter. Differential growth is introduced by growing the top layer tangentially, while keeping the underlying layer untouched. The brain tissue is modeled as a neo-Hookean hyperelastic material. Simulations are performed with both, homogeneous and inhomogeneous cortical thickness. The homogeneous cortex is shown to fold into a single wavelength, as is common for bilayered materials, while the inhomogeneous cortex folds into more complex conformations. In the early stages of development of the inhomogeneous cortex, structures reminiscent of the deep sulci in the brain are obtained. As the cortex continues to develop, secondary undulations, which are shallower and more variable than the structures obtained in earlier gyrification stage emerge, reproducing well-known characteristics of higher-order folding in the mammalian, and particularly the human, brain.


Sign in / Sign up

Export Citation Format

Share Document