scholarly journals Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub–100-nm-thick oriented MFI layer fabrication

2020 ◽  
Vol 6 (7) ◽  
pp. eaay5993 ◽  
Author(s):  
Yi Liu ◽  
Weili Qiang ◽  
Taotao Ji ◽  
Mu Zhang ◽  
Mingrun Li ◽  
...  

Zeolite nanosheets have shown unprecedented opportunities for a wide range of applications, yet developing facile methods for fabrication of uniform zeolite nanosheets remains a great challenge. Here, a facile approach involving anisotropic etching with an aqueous solution of tetrapropylammonium hydroxide (TPAOH) was developed for preparing uniform high–aspect ratio hierarchical MFI nanosheets. In addition, the mechanism associated with the formation of MFI nanosheets was proposed. In the next step, a dynamic air-liquid interface–assisted self-assembly method and single-mode microwave heating were used for b-oriented MFI nanosheets monolayer deposition and controlled in-plane solution-based epitaxial growth, respectively, ensuring the formation of well-intergrown b-oriented MFI layers with sub–100-nm thickness. Moreover, our study indicated that b-oriented ultrathin MFI layers could be fabricated on diverse substrates demonstrating excellent anticorrosion capacity, ionic sieving properties, and n-/i-butane isomer separation performance.

1992 ◽  
Vol 70 (3) ◽  
pp. 779-791 ◽  
Author(s):  
Philip A. W. Dean ◽  
Jagadese J. Vittal ◽  
Yuyang Wu

The self-assembly method has been used to prepare a wide range of new adamantane-like anions of the type [(μ-SR)6(MX)4]2− (M = Zn or Cd; R = alkyl or benzyl; X = Cl, Br, or I) as their Et4N+ salts. Metal (111 or 113Cd) NMR data have been measured for the cadmium complexes, and also for many of the possible mixed-metal complexes [(μ-SR)6(CdX)n(ZnX)4−n]2−. In the complexes with mixed metals, the effects of Zn substitution on the metal chemical shifts are generally larger for the alkyl- and benzyl-thiolate complexes than for related benzenethiolate complexes. However, for [(μ-SPri)6(CdX)n(CdX′)4−n]2− (X/X′ = Cl/Br, Cl/I, or Br/I), substituent effects are no larger than found in some PhS−-bridged complexes. The reaction of [(μ-SPri)6(CdX)4]2− (X = Cl, Br, or I) with E′8 (E′ = S or Se) in CH2Cl2 gives [Cd4(μ4-E′) (μ-SPri)12(CdX)4]2− as the major species detectable by metal, 13C, and, where applicable, 77Se NMR. However, the reaction does not occur stoichiometrically. The compound (Et4N)2[(μ-SPri)6(CdBr)4] crystallizes in the monoclinic space group P21/c with cell dimensions a = 24.079(3) Å, b = 11.365(2) Å, c = 22.561(3) Å, β = 113.89(1), and Z = 4. The structure was refined to R(Rw) = 0.0663(0.0703) with the use of 2669 unique data with I > 2.5σ(I). The anion contains an adamantane-type (μ2-S)6Cd4 cage composed of a nearly regular Cd4 tetrahedron and a distorted S6 octahedron, the irregularity of which is caused by 1,3-interactions of the substituent groups on the sulfur atoms. The axial or equatorial dispositions of the six alkyl groups in the four fused M3S3 rings are [aae, aae, aee, aee]. For the zinc-group elements, this is the first example of an adamantane-like (μ-Salkyl)6M4 cage that has been characterized crystallographically. Keywords: cadmium complex, cadmium-111/113 NMR, thiolate complex, X-ray analysis, zinc complex.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaozhi Xu ◽  
Jiajie Wang ◽  
Awu Zhou ◽  
Siyuan Dong ◽  
Kaiqiang Shi ◽  
...  

AbstractMembrane-based gas separation exhibits many advantages over other conventional techniques; however, the construction of membranes with simultaneous high selectivity and permeability remains a major challenge. Herein, (LDH/FAS)n-PDMS hybrid membranes, containing two-dimensional sub-nanometre channels were fabricated via self-assembly of unilamellar layered double hydroxide (LDH) nanosheets and formamidine sulfinic acid (FAS), followed by spray-coating with a poly(dimethylsiloxane) (PDMS) layer. A CO2 transmission rate for (LDH/FAS)25-PDMS of 7748 GPU together with CO2 selectivity factors (SF) for SF(CO2/H2), SF(CO2/N2) and SF(CO2/CH4) mixtures as high as 43, 86 and 62 respectively are observed. The CO2 permselectivity outperforms most reported systems and is higher than the Robeson or Freeman upper bound limits. These (LDH/FAS)n-PDMS membranes are both thermally and mechanically robust maintaining their highly selective CO2 separation performance during long-term operational testing. We believe this highly-efficient CO2 separation performance is based on the synergy of enhanced solubility, diffusivity and chemical affinity for CO2 in the sub-nanometre channels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 191
Author(s):  
José A. P. Morgado ◽  
Adolfo V. T. Cartaxo

The correlation and power distribution of intercore crosstalk (ICXT) field components of weakly coupled multicore fibers (WC-MCFs) are important properties that determine the statistics of the ICXT and ultimately impact the performance of WC-MCF optical communication systems. Using intensive numerical simulation of the coupled mode equations describing ICXT of a single-mode WC-MCF with intracore birefringence and linear propagation, we assess the mean, correlation, and power distribution of the four ICXT field components of unmodulated polarization-coupled homogeneous and quasi-homogeneous WC-MCFs with a single interfering core in a wide range of birefringence conditions and power distribution among the field components at the interfering core input. It is shown that, for homogeneous and quasi-homogeneous WC-MCFs, zero mean uncorrelated ICXT field components with similar power levels are observed for birefringence correlation length and birefringence beat length in the ranges of 0.5m,10m and 0.1m,10m, respectively, regardless of the distribution of power between the four field components at the interfering core input.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


2003 ◽  
Vol 42 (Part 2, No. 7B) ◽  
pp. L852-L855 ◽  
Author(s):  
Eisuke Ito ◽  
Jaegeun Noh ◽  
Masahiko Hara

2015 ◽  
Vol 284 ◽  
pp. 253-256 ◽  
Author(s):  
Guang Yuan ◽  
Xiaofeng Chen ◽  
Xian Li ◽  
Qiming Liang ◽  
Guohou Miao ◽  
...  

1992 ◽  
Vol 277 ◽  
Author(s):  
Geoffrey A. Ozin ◽  
Carol L. Bowes ◽  
Mark R. Steele

ABSTRACTVarious MOCVD (metal-organic chemical vapour deposition) type precursors and their self-assembled semiconductor nanocluster products [1] have been investigated in zeolite Y hosts. From analysis of in situ observations (FTIR, UV-vis reflectance, Mössbauer, MAS-NMR) of the reaction sequences and structural features of the precursors and products (EXAFS and Rietveld refinement of powder XRD data) the zeolite is viewed as providing a macrospheroidal, multidendate coordination environment towards encapsulated guests. By thinking about the α- and β-cages of the zeolite Y host effectively as a zeolate ligand composed of interconnected aluminosilicate “crown ether-like” building blocks, the materials chemist is able to better understand and exploit the reactivity and coordination properties of the zeolite internal surface for the anchoring and self-assembly of a wide range of encapsulated guests. This approach helps with the design of synthetic strategies for creating novel guest-host inclusion compounds having possible applications in areas of materials science such as nonlinear optics, quantum electronics, and size/shape selective catalysis.


2013 ◽  
Vol 401-403 ◽  
pp. 663-666
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Zhong Guo Mu ◽  
Yun Bai

Polyaniline (PANI) nanotubes were synthesized separately using amino acetic acid (AA), ethylenediamine tetraacetic acid (EDTA), oxalic acid (OA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. SEM, TEM,FTIR and X-ray diffraction (XRD) and applying the 4 probes method characterized the morphology, structure and property of the product. It was found that nanotubes morphology were synthesized when the [Aci/[A ratio is 1:2.The room template conductivity of the products were studied.


Sign in / Sign up

Export Citation Format

Share Document