scholarly journals Examining metastatic behavior within 3D bioprinted vasculature for the validation of a 3D computational flow model

2020 ◽  
Vol 6 (35) ◽  
pp. eabb3308 ◽  
Author(s):  
W. F. Hynes ◽  
M. Pepona ◽  
C. Robertson ◽  
J. Alvarado ◽  
K. Dubbin ◽  
...  

Understanding the dynamics of circulating tumor cell (CTC) behavior within the vasculature has remained an elusive goal in cancer biology. To elucidate the contribution of hydrodynamics in determining sites of CTC vascular colonization, the physical forces affecting these cells must be evaluated in a highly controlled manner. To this end, we have bioprinted endothelialized vascular beds and perfused these constructs with metastatic mammary gland cells under physiological flow rates. By pairing these in vitro devices with an advanced computational flow model, we found that the bioprinted analog was readily capable of evaluating the accuracy and integrated complexity of a computational flow model, while also highlighting the discrete contribution of hydrodynamics in vascular colonization. This intersection of these two technologies, bioprinting and computational simulation, is a key demonstration in the establishment of an experimentation pipeline for the understanding of complex biophysical events.

1999 ◽  
Vol 1 ◽  
pp. S86-S86
Author(s):  
R DESIMONE ◽  
G GLOMBITZA ◽  
C VAHL ◽  
H MEINZER ◽  
S HAGL

2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


2019 ◽  
Vol 25 (28) ◽  
pp. 3020-3027 ◽  
Author(s):  
Mir W. Sekandarzad ◽  
Chris Doornebal ◽  
Markus W. Hollmann

: Opioids remain the standard of care in the provision of analgesia in the patient undergoing cancer surgery preoperatively. : The effects of opioids on tumor growth and metastasis have been discussed for many years. In recent years their use as part of the perioperative pain management bundle in the patients undergoing cancer surgery has been thought to promote cancer recurrence and metastasis. : This narrative review highlights earlier and more recent in vitro, in vivo and human retrospective studies that yield conflicting results as to the immune-modulatory effects of morphine on tumor biology. The article examines and explains the discrepancies with regards to the seemingly opposite results of morphine in the tumor milieu. The results of both, earlier studies that demonstrated procarcinogenic effects versus the data of more recent refined rodent studies that yielded neutral or even anti-carcinogenic effects are presented here. : Until the results of prospective randomized controlled trials are available to clarify this important question, it is currently not warranted to support opiophobia and opioids continue to constitute a pivotal role in the pain management of cancer patients.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Ghmkin Hassan ◽  
Said M. Afify ◽  
Shiro Kitano ◽  
Akimasa Seno ◽  
Hiroko Ishii ◽  
...  

Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.


2021 ◽  
Vol 16 (1) ◽  
pp. 523-536
Author(s):  
Minghao Li ◽  
Jianbin Zhuang ◽  
Di Kang ◽  
Yuzhuo Chen ◽  
Weiliang Song

Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been implicated in cancer biology. The purpose of the current work is to investigate the precise parts of circRNA centrosome and spindle pole-associated protein 1 (circ-CSPP1) in the progression of CRC. Our data showed that circ-CSPP1 was significantly overexpressed in CRC tissues and cells. The knockdown of circ-CSPP1 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and weakened tumor growth in vivo. circ-CSPP1 directly targeted miR-431, and circ-CSPP1 knockdown modulated CRC cell progression in vitro via upregulating miR-431. Moreover, LIM and SH3 protein 1 (LASP1) was a functional target of miR-431 in modulating CRC cell malignant progression. Furthermore, circ-CSPP1 in CRC cells functioned as a posttranscriptional regulator on LASP1 expression by targeting miR-431. Our present study identified the oncogenic role of circ-CSPP1 in CRC partially by the modulation of the miR-431/LASP1 axis, providing evidence for circ-CSPP1 as a promising biomarker for CRC management.


NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Luisa Statello ◽  
Mohamad M Ali ◽  
Silke Reischl ◽  
Sagar Mahale ◽  
Subazini Thankaswamy Kosalai ◽  
...  

Abstract Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.


1974 ◽  
Vol 60 (2) ◽  
pp. 217-222
Author(s):  
R. FAGARD ◽  
E. FOSSION ◽  
M. CAMPFORTS ◽  
A. AMERY

SUMMARY It was demonstrated previously that renin disappears quickly from the circulation after nephrectomy in the hepatectomized dog. In the present study the plasma renin concentration (PRC) was measured in the efferent and afferent blood vessels of several vascular beds (pulmonary circulation, splanchnic region, spleen, both inferior limbs and pelvis, head) in the anhepatic and in the anhepatic and anephric dog in order to investigate extrarenal and extrahepatic renin inactivation. However, no significant arteriovenous differences in PRC could be traced. The blood of these dogs kept in vitro at 37 °C in a glass container showed no decline in PRC within 3 h of removal. Therefore no specific extrahepatic and extrarenal renin-inactivating mechanism was found which could explain the rapid disappearance of renin from the blood in vivo in the anhepatic and anephric dog.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lauren Andrews ◽  
Scott Benken ◽  
Xing Tan ◽  
Eric Wenzler

Abstract Background To evaluate the transmembrane clearance (CLTM) of apixaban during modeled in vitro continuous renal replacement therapy (CRRT), assess protein binding and circuit adsorption, and provide initial dosing recommendations. Methods Apixaban was added to the CRRT circuit and serial pre-filter bovine blood samples were collected along with post-filter blood and effluent samples. All experiments were performed in duplicate using continuous veno-venous hemofiltration (CVVH) and hemodialysis (CVVHD) modes, with varying filter types, flow rates, and point of CVVH replacement fluid dilution. Concentrations of apixaban and urea were quantified via liquid chromatography-tandem mass spectrometry. Plasma pharmacokinetic parameters for apixaban were estimated via noncompartmental analysis. CLTM was calculated via the estimated area under the curve (AUC) and by the product of the sieving/saturation coefficient (SC/SA) and flow rate. Two and three-way analysis of variance (ANOVA) models were built to assess the effects of mode, filter type, flow rate, and point of dilution on CLTM by each method. Optimal doses were suggested by matching the AUC observed in vitro to the systemic exposure demonstrated in Phase 2/3 studies of apixaban. Linear regression was utilized to provide dosing estimations for flow rates from 0.5–5 L/h. Results Mean adsorption to the HF1400 and M150 filters differed significantly at 38 and 13%, respectively, while mean (± standard deviation, SD) percent protein binding was 70.81 ± 0.01%. Effect of CVVH point of dilution did not differ across filter types, although CLTM was consistently significantly higher during CRRT with the HF1400 filter compared to the M150. The three-way ANOVA demonstrated improved fit when CLTM values calculated by AUC were used (adjusted R2 0.87 vs. 0.52), and therefore, these values were used to generate optimal dosing recommendations. Linear regression revealed significant effects of filter type and flow rate on CLTM by AUC, suggesting doses of 2.5–7.5 mg twice daily (BID) may be needed for flow rates ranging from 0.5–5 L/h, respectively. Conclusion For CRRT flow rates most commonly employed in clinical practice, the standard labeled 5 mg BID dose of apixaban is predicted to achieve target systemic exposure thresholds. The safety and efficacy of these proposed dosing regimens warrants further investigation in clinical studies.


1989 ◽  
Vol 9 (5) ◽  
pp. 2133-2141
Author(s):  
J H Axelrod ◽  
R Reich ◽  
R Miskin

The gene transfer technique was used to examine the role of plasminogen activator (PA) in the invasive and metastatic behavior of tumorigenic cells. H-ras-transformed NIH 3T3 clonal cells producing a very low level of PA were generated and further transfected with an expression plasmid containing a cDNA sequence encoding either the urokinase-type or the tissue-type human PA. Compared with the parental transformed cells, clonal cells expressing high levels of both types of recombinant PA invaded more rapidly through a basement membrane reconstituted in vitro. Furthermore, cells expressing high levels of recombinant urokinase-type PA also caused a higher incidence of pulmonary metastatic lesions after intravenous injection into nude mice. Both activities were reduced by the serine proteinase inhibitor EACA; invasion was also suppressed by antibodies blocking the activity of human PAs and by the synthetic collagenase inhibitor SC-44463. These findings provide direct genetic evidence for a causal role of PA in invasive and metastatic activities.


2018 ◽  
Vol 39 (10) ◽  
pp. 104001 ◽  
Author(s):  
Kim van Noort ◽  
Suzanne Holewijn ◽  
Richte C L Schuurmann ◽  
Johannes T Boersen ◽  
Simon P Overeem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document