crc management
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 14)

H-INDEX

2
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Gaelle Tachon ◽  
Arnaud Chong-Si-Tsaon ◽  
Thierry Lecomte ◽  
Audelaure Junca ◽  
Éric Frouin ◽  
...  

Determination of microsatellite instability (MSI) using molecular test and deficient mismatch repair (dMMR) using immunohistochemistry (IHC) has major implications on colorectal cancer (CRC) management. The HSP110 T17 microsatellite has been reported to be more monomorphic than the common markers used for MSI determination. Large deletion of HSP110 T17 has been associated with efficacy of adjuvant chemotherapy in dMMR/MSI CRCs. The aim of this study was to evaluate the interest of HSP110 deletion/expression as a diagnostic tool of dMMR/MSI CRCs and a predictive tool of adjuvant chemotherapy efficacy. All patients with MSI CRC classified by molecular testing were included in this multicenter prospective cohort (n = 381). IHC of the 4 MMR proteins was carried out. HSP110 expression was carried out by IHC (n = 343), and the size of HSP110 T17 deletion was determined by PCR (n = 327). In the 293 MSI CRCs with both tests, a strong correlation was found between the expression of HSP110 protein and the size of HSP110 T17 deletion. Only 5.8% of MSI CRCs had no HSP110 T17 deletion (n = 19/327). HSP110 T17 deletion helped to re-classify 4 of the 9 pMMR/MSI discordance cases as pMMR/MSS cases. We did not observe any correlation between HSP110 expression or HSP110 T17 deletion size with time to recurrence in patients with stage II and III CRC, treated with or without adjuvant chemotherapy. HSP110 is neither a robust prognosis marker nor a predictor tool of adjuvant chemotherapy efficacy in dMMR/MSI CRC. However, HSP110 T17 is an interesting marker, which may be combined with the other pentaplex markers to identify discordant cases between MMR IHC and MSI.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wanru Zhang ◽  
Yaping An ◽  
Xiali Qin ◽  
Xuemei Wu ◽  
Xinyu Wang ◽  
...  

Accumulating evidence from studies in humans and animal models has elucidated that gut microbiota, acting as a complex ecosystem, contributes critically to colorectal cancer (CRC). The potential mechanisms often reported emphasize the vital role of carcinogenic activities of specific pathogens, but in fact, a series of metabolites produced from exogenous dietary substrates or endogenous host compounds occupy a decisive position similarly. Detrimental gut microbiota-derived metabolites such as trimethylamine-N-oxide, secondary bile acids, hydrogen sulfide and N-nitroso compounds could reconstruct the ecological composition and metabolic activity of intestinal microorganisms and formulate a microenvironment that opens susceptibility to carcinogenic stimuli. They are implicated in the occurrence, progression and metastasis of CRC through different mechanisms, including inducing inflammation and DNA damage, activating tumorigenic signaling pathways and regulating tumor immunity. In this review, we mainly summarized the intimate relationship between detrimental gut microbiota-derived metabolites and CRC, and updated the current knowledge about detrimental metabolites in CRC pathogenesis. Then, multiple interventions targeting these metabolites for CRC management were critically reviewed, including diet modulation, probiotics/prebiotics, fecal microbiota transplantation, as well as more precise measures such as engineered bacteria, phage therapy and chemopreventive drugs. A better understanding of the interplay between detrimental microbial metabolites and CRC would hold great promise against CRC.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 906
Author(s):  
Kaitlin Rim ◽  
Jamie Crawford ◽  
Steven J. Price ◽  
Donald R. Viands ◽  
Ricardo A. Ramirez

Since the cancellation of broad-spectrum soil-active insecticides in alfalfa (Medicago sativa L.) production, clover root curculio (Sitona hispidulus F.) (CRC) larval root damage has increased. Current CRC management practices are limited in their ability to suppress larval feeding belowground. First, we field screened developmental alfalfa populations for CRC damage. Subsequently, we developed a soil-less arena to observe nodule feeding and development (head capsule width) of larvae in the lab. This method was used to evaluate five alfalfa populations (two CRC-susceptible (control) and three CRC-resistant populations) against larvae. Further, one CRC-resistant population paired with its genetically similar susceptible population were tested against adult leaf consumption and oviposition in the greenhouse. Field screening revealed that the alfalfa populations selected for little or no larval root feeding damage were more resistant to CRC larval feeding than their corresponding unselected cultivars and significantly more resistant than populations selected for susceptibility. The development of a soil-less arena provided a useful method for evaluation of root-larva interactions. Although larval development was similar across susceptible and resistant alfalfa populations, one CRC-resistant population (NY1713) displayed overall increased nodulation and, thus, had a significantly lower proportion of nodules consumed by larvae. Adult feeding and oviposition aboveground were similar across all populations tested. These results provide possible candidates and screening method for the development and evaluation of alfalfa cultivars that may reduce the impacts of larval feeding and that offer an additional option for CRC management.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4499
Author(s):  
Laura Bracci ◽  
Alessia Fabbri ◽  
Manuela Del Cornò ◽  
Lucia Conti

Colorectal cancer (CRC) is a major cancer type and a leading cause of death worldwide. Despite advances in therapeutic management, the current medical treatments are not sufficient to control metastatic disease. Treatment-related adverse effects and drug resistance strongly contribute to therapy failure and tumor recurrence. Combination therapy, involving cytotoxic treatments and non-toxic natural compounds, is arousing great interest as a promising more effective and safer alternative. Polyphenols, a heterogeneous group of bioactive dietary compounds mainly found in fruit and vegetables, have received great attention for their capacity to modulate various molecular pathways active in cancer cells and to affect host anticancer response. This review provides a summary of the most recent (i.e., since 2016) preclinical and clinical studies using polyphenols as adjuvants for CRC therapies. These studies highlight the beneficial effects of dietary polyphenols in combination with cytotoxic drugs or irradiation on both therapy outcome and drug resistance. Despite substantial preclinical evidence, data from a few pilot clinical trials are available to date with promising but still inconclusive results. Larger randomized controlled studies and polyphenol formulations with improved bioavailability are needed to translate the research progress into clinical applications and definitively prove the added value of these molecules in CRC management.


Author(s):  
Prashanthi Ramesh ◽  
Tamsin R. M. Lannagan ◽  
Rene Jackstadt ◽  
Lidia Atencia Taboada ◽  
Nico Lansu ◽  
...  

AbstractEvasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2440
Author(s):  
Octav Ginghină ◽  
Ariana Hudiță ◽  
Cătălin Zaharia ◽  
Aristidis Tsatsakis ◽  
Yaroslav Mezhuev ◽  
...  

Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Sha Zhou ◽  
Jianhong Peng ◽  
Liuniu Xiao ◽  
Caixia Zhou ◽  
Yujing Fang ◽  
...  

AbstractResistance to chemotherapy remains the major cause of treatment failure in patients with colorectal cancer (CRC). Here, we identified TRIM25 as an epigenetic regulator of oxaliplatin (OXA) resistance in CRC. The level of TRIM25 in OXA-resistant patients who experienced recurrence during the follow-up period was significantly higher than in those who had no recurrence. Patients with high expression of TRIM25 had a significantly higher recurrence rate and worse disease-free survival than those with low TRIM25 expression. Downregulation of TRIM25 dramatically inhibited, while overexpression of TRIM25 increased, CRC cell survival after OXA treatment. In addition, TRIM25 promoted the stem cell properties of CRC cells both in vitro and in vivo. Importantly, we demonstrated that TRIM25 inhibited the binding of E3 ubiquitin ligase TRAF6 to EZH2, thus stabilizing and upregulating EZH2, and promoting OXA resistance. Our study contributes to a better understanding of OXA resistance and indicates that inhibitors against TRIM25 might be an excellent strategy for CRC management in clinical practice.


2021 ◽  
Vol 16 (1) ◽  
pp. 523-536
Author(s):  
Minghao Li ◽  
Jianbin Zhuang ◽  
Di Kang ◽  
Yuzhuo Chen ◽  
Weiliang Song

Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been implicated in cancer biology. The purpose of the current work is to investigate the precise parts of circRNA centrosome and spindle pole-associated protein 1 (circ-CSPP1) in the progression of CRC. Our data showed that circ-CSPP1 was significantly overexpressed in CRC tissues and cells. The knockdown of circ-CSPP1 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and weakened tumor growth in vivo. circ-CSPP1 directly targeted miR-431, and circ-CSPP1 knockdown modulated CRC cell progression in vitro via upregulating miR-431. Moreover, LIM and SH3 protein 1 (LASP1) was a functional target of miR-431 in modulating CRC cell malignant progression. Furthermore, circ-CSPP1 in CRC cells functioned as a posttranscriptional regulator on LASP1 expression by targeting miR-431. Our present study identified the oncogenic role of circ-CSPP1 in CRC partially by the modulation of the miR-431/LASP1 axis, providing evidence for circ-CSPP1 as a promising biomarker for CRC management.


2020 ◽  
Vol 22 (1) ◽  
pp. 130
Author(s):  
Ahmed Malki ◽  
Rasha Abu ElRuz ◽  
Ishita Gupta ◽  
Asma Allouch ◽  
Semir Vranic ◽  
...  

Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.


2020 ◽  
Vol 15 (16) ◽  
pp. 1583-1594
Author(s):  
Harika Nalluri ◽  
Subbaya Subramanian ◽  
Christopher Staley

Colorectal cancer (CRC) is the third most common cause of cancer worldwide. Recent studies have suggested that a dysbiotic shift in the intestinal microbial composition of CRC patients influences tumorigenesis. Gut microbes are known to be integral for intestinal homeostasis; however, the mechanisms by which they impact CRC are unclear. Further knowledge about these complex interactions may guide future CRC management. Thus, it is crucial to establish high-quality experimental models to understand the relationship between host, tumor, microbiota and their metabolic interactions. In this review, we highlight the significance of intestinal microbiota and their metabolites in CRC, challenges with current experimental models, advantages and limitations of organoid culture and future directions of this novel model system in CRC-associated microbiome research.


Sign in / Sign up

Export Citation Format

Share Document