scholarly journals Direct evidence of acid-base interactions in gecko adhesion

2021 ◽  
Vol 7 (21) ◽  
pp. eabd9410
Author(s):  
Saranshu Singla ◽  
Dharamdeep Jain ◽  
Chelsea M. Zoltowski ◽  
Sriharsha Voleti ◽  
Alyssa Y. Stark ◽  
...  

While it is generally accepted that van der Waals (vdW) forces govern gecko adhesion, several studies indicate contributions from non-vdW forces and highlight the importance of understanding the adhesive contact interface. Previous work hypothesized that the surface of gecko setae is hydrophobic, with nonpolar lipid tails exposed on the surface. However, direct experimental evidence supporting this hypothesis and its implications on the adhesion mechanism is lacking. Here, we investigate the sapphire-setae contact interface using interface-sensitive spectroscopy and provide direct evidence of the involvement of acid-base interactions between polar lipid headgroups exposed on the setal surface and sapphire. During detachment, a layer of unbound lipids is left as a footprint due to cohesive failure within the lipid layer, which, in turn, reduces wear to setae during high stress sliding. The absence of this lipid layer enhances adhesion, despite a small setal-substrate contact area. Our results show that gecko adhesion is not exclusively a vdW-based, residue-free system.

2011 ◽  
Vol 9 (69) ◽  
pp. 657-664 ◽  
Author(s):  
Ping Yuan Hsu ◽  
Liehui Ge ◽  
Xiaopeng Li ◽  
Alyssa Y. Stark ◽  
Chrys Wesdemiotis ◽  
...  

Observers ranging from Aristotle to young children have long marvelled at the ability of geckos to cling to walls and ceilings. Detailed studies have revealed that geckos are ‘sticky’ without the use of glue or suction devices. Instead, a gecko's stickiness derives from van der Waals interactions between proteinaceous hairs called setae and substrate. Here, we present surprising evidence that although geckos do not use glue, a residue is transferred on surfaces as they walk—geckos leave footprints . Using matrix-free nano-assisted laser desorption-ionization mass spectrometry, we identified the residue as phospholipids with phosphocholine head groups. Moreover, interface-sensitive sum-frequency generation spectroscopy revealed predominantly hydrophobic methyl and methylene groups and the complete absence of water at the contact interface between a gecko toe pad and the substrate. The presence of lipids has never been considered in current models of gecko adhesion. Our analysis of gecko footprints and the toe pad–substrate interface has significant consequences for models of gecko adhesion and by extension, the design of synthetic mimics.


1999 ◽  
Vol 277 (6) ◽  
pp. F841-F849 ◽  
Author(s):  
Saskia Huber ◽  
Esther Asan ◽  
Thomas Jöns ◽  
Christiane Kerscher ◽  
Bernd Püschel ◽  
...  

By enzyme-linked in situ hybridization (ISH), direct evidence is provided that acid-secreting intercalated cells (type A IC) of both the cortical and medullary collecting ducts of the rat kidney selectively express the mRNA of the kidney splice variant of anion exchanger 1 (kAE1) and no detectable levels of the erythrocyte AE1 (eAE1) mRNA. Using single-cell quantification by microphotometry of ISH enzyme reaction, medullary type A IC were found to contain twofold higher kAE1 mRNA levels compared with cortical type A IC. These differences correspond to the higher intensity of immunostaining in medullary versus cortical type A IC. Chronic changes of acid-base status induced by addition of NH4Cl (acidosis) or NaHCO3 (alkalosis) to the drinking water resulted in up to 35% changes of kAE1 mRNA levels in both cortical and medullary type A IC. These experiments provide direct evidence at the cellular level of kAE1 expression in type A IC and show moderate capacity of type A IC to respond to changes of acid-base status by modulation of kAE1 mRNA levels.


2021 ◽  
Author(s):  
Garfield Tsz Kwan ◽  
Martin Tresguerres

Over a decade ago, ocean acidification (OA) exposure was reported to induce otolith overgrowth in teleost fish. This phenomenon was subsequently confirmed in multiple species; however, the underlying physiological causes remain unknown. Here, we report that splitnose rockfish (Sebastes diploproa) exposed to ~1,600 μatm pCO2 (pH ~7.5) were able to fully regulated the pH of both blood and endolymph (the fluid that surrounds the otolith within the inner ear). However, while blood was regulated around pH 7.80, the endolymph was regulated around pH ~8.30. These different pH setpoints result in increased pCO2 diffusion into the endolymph, which in turn leads to proportional increases in endolymph [HCO3-] and [CO32-]. Endolymph pH regulation despite the increased pCO2 suggests enhanced H+ removal. However, a lack of differences in inner ear bulk and cell-specific Na+/K+-ATPase and vacuolar type H+-ATPase protein abundance localization pointed out to activation of preexisting ATPases, non-bicarbonate pH buffering, or both, as the mechanism for endolymph pH-regulation. These results provide the first direct evidence showcasing the acid-base chemistry of the endolymph of OA-exposed fish favors otolith overgrowth, and suggests that this phenomenon will be more pronounced in species that count with more robust blood and endolymph pH regulatory mechanisms.


1991 ◽  
Vol 115 (4) ◽  
pp. 995-1007 ◽  
Author(s):  
K D Chapman ◽  
R N Trelease

Glyoxysomes in cotyledons of cotton (Gossypium hirsutum, L.) seedlings enlarge dramatically within 48 h after seed imbibition (Kunce, C.M., R.N. Trelease, and D.C. Doman. 1984. Planta (Berl.). 161:156-164) to effect mobilization of stored cotton-seed oil. We discovered that the membranes of enlarging glyoxysomes at all stages examined contained a large percentage (36-62% by weight) of nonpolar lipid, nearly all of which were triacylglycerols (TAGs) and TAG metabolites. Free fatty acids comprised the largest percentage of these nonpolar lipids. Six uncommon (and as yet unidentified) fatty acids constituted the majority (51%) of both the free fatty acids and the fatty acids in TAGs of glyoxysome membranes; the same six uncommon fatty acids were less than 7% of the acyl constituents in TAGs extracted from cotton-seed storage lipid bodies. TAGs of lipid bodies primarily were composed of palmitic, oleic, and linoleic acids (together 70%). Together, these three major storage fatty acids were less than 10% of both the free fatty acids and fatty acids in TAGs of glyoxysome membranes. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) constituted a major portion of glyoxysome membrane phospholipids (together 61% by weight). Pulse-chase radiolabeling experiments in vivo clearly demonstrated that 14C-PC and 14C-PE were synthesized from 14C-choline and 14C-ethanolamine, respectively, in ER of cotyledons, and then transported to mitochondria; however, these lipids were not transported to enlarging glyoxysomes. The lack of ER involvement in glyoxysome membrane phospholipid synthesis, and the similarities in lipid compositions between lipid bodies and membranes of glyoxysomes, led us to formulate and test a new hypothesis whereby lipid bodies serve as the dynamic source of nonpolar lipids and phospholipids for membrane expansion of enlarging glyoxysomes. In a cell-free system, 3H-triolein (TO) and 3H-PC were indeed transferred from lipid bodies to glyoxysomes. 3H-PC, but not 3H-TO, also was transferred to mitochondria in vitro. The amount of lipid transferred increased linearly with respect to time and amount of acceptor organelle protein, and transfer occurred only when lipid body membrane proteins were associated with the donor lipid bodies. 3H-TO was transferred to and incorporated into glyoxysome membranes, and then hydrolyzed to free fatty acids. 3H-PC was transferred to and incorporated into glyoxysome and mitochondria membranes without subsequent hydrolysis. Our data are inconsistent with the hypothesis that ER contributes membrane lipids to glyoxysomes during postgerminative seedling growth.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Valentin L. Popov

According the JKR theory of adhesive contact, changes of the contact configuration after formation of the adhesive neck and before detaching are completely reversible. This means, that after formation of the initial contact, the force-distance dependencies should coincide, independently on the direction of the process (indentation or pull-off). In the majority of real systems, this invariance is not observed. The reasons for this may be either plastic deformation in the contacting bodies or surface roughness. One further mechanism of irreversibility (and corresponding energy dissipation) may be chemical heterogeneity of the contact interface leading to the spatial dependence of the specific work of adhesion. In the present paper, this "chemical" mechanism is analyzed on a simple example of an axisymmetric contact (with axisymmetric heterogeneity). It is shown that in the asymptotic case of a "microscopic heterogeneity", the system follows, during both indentation and pull-off, JKR curves, however, corresponding to different specific surface energies. After the turning point of the movement, the contact area first does not change and the transition from one JKR curve to the other occurs via a linear dependency of the force on indentation depth. The macroscopic behavior is not sensitive to the absolute and relative widths of the regions with different surface energy but depends mainly on the values of the specific surface energy.


2002 ◽  
Vol 2002 ◽  
pp. 174-174
Author(s):  
D. N. Hamilton ◽  
T. M. Bertol ◽  
M. Ellis ◽  
S. N. Carr ◽  
F. K. McKeith

Pale soft exudative pork (PSE) is a major problem affecting swine industries worldwide that results in significant economic loss because it reduces processing and saleable product yields. The PSE condition results from a rapid rate of muscle glycolysis early postmortem and a rapid drop in muscle pH while the temperature of the carcass is still high. Stress prior to slaughter can increase the rate of glycolysis and postmortem acidification. Blood acid-base has been used as an indicator of stress in pigs. The objective of this experiment was to investigate the relationship between blood acid-base status at slaughter and fresh meat quality in pigs.


Sign in / Sign up

Export Citation Format

Share Document