Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

Science ◽  
2012 ◽  
Vol 336 (6089) ◽  
pp. 1708-1711 ◽  
Author(s):  
Corey S. Westfall ◽  
Chloe Zubieta ◽  
Jonathan Herrmann ◽  
Ulrike Kapp ◽  
Max H. Nanao ◽  
...  

Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid–specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.

2013 ◽  
Vol 69 (10) ◽  
pp. 2136-2145 ◽  
Author(s):  
Jonghyeon Son ◽  
Eun Hye Lee ◽  
Minyoung Park ◽  
Jong Hyun Kim ◽  
Junsoo Kim ◽  
...  

Aminoacyl-tRNA synthetases recognize cognate amino acids and tRNAs from their noncognate counterparts and catalyze the formation of aminoacyl-tRNAs. Halofuginone (HF), a coccidiostat used in veterinary medicine, exerts its effects by acting as a high-affinity inhibitor of the enzyme glutamyl-prolyl-tRNA synthetase (EPRS). In order to elucidate the precise molecular basis of this inhibition mechanism of human EPRS, the crystal structures of the prolyl-tRNA synthetase domain of human EPRS (hPRS) at 2.4 Å resolution (hPRS-apo), ofhPRS complexed with ATP and the substrate proline at 2.3 Å resolution (hPRS-sub) and ofhPRS complexed with HF at 2.62 Å resolution (hPRS-HF) are presented. These structures show plainly that motif 1 functions as a cap inhPRS, which is loosely opened inhPRS-apo, tightly closed inhPRS-sub and incorrectly closed inhPRS-HF. In addition, the structural analyses are consistent with more effective binding ofhPRS to HF with ATP. Mutagenesis and biochemical analysis confirmed the key roles of two residues, Phe1097 and Arg1152, in the HF inhibition mechanism. These structures will lead to the development of more potent and selectivehPRS inhibitors for promoting inflammatory resolution.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


2015 ◽  
Vol 112 (22) ◽  
pp. 6961-6966 ◽  
Author(s):  
Han Xiao ◽  
Fariborz Nasertorabi ◽  
Sei-hyun Choi ◽  
Gye Won Han ◽  
Sean A. Reed ◽  
...  

With few exceptions, all living organisms encode the same 20 canonical amino acids; however, it remains an open question whether organisms with additional amino acids beyond the common 20 might have an evolutionary advantage. Here, we begin to test that notion by making a large library of mutant enzymes in which 10 structurally distinct noncanonical amino acids were substituted at single sites randomly throughout TEM-1 β-lactamase. A screen for growth on the β-lactam antibiotic cephalexin afforded a unique p-acrylamido-phenylalanine (AcrF) mutation at Val-216 that leads to an increase in catalytic efficiency by increasing kcat, but not significantly affecting KM. To understand the structural basis for this enhanced activity, we solved the X-ray crystal structures of the ligand-free mutant enzyme and of the deacylation-defective wild-type and mutant cephalexin acyl-enzyme intermediates. These structures show that the Val-216–AcrF mutation leads to conformational changes in key active site residues—both in the free enzyme and upon formation of the acyl-enzyme intermediate—that lower the free energy of activation of the substrate transacylation reaction. The functional changes induced by this mutation could not be reproduced by substitution of any of the 20 canonical amino acids for Val-216, indicating that an expanded genetic code may offer novel solutions to proteins as they evolve new activities.


Author(s):  
Kaiming Zhang ◽  
Shanshan Li ◽  
Kan-Yen Hsieh ◽  
Shih-Chieh Su ◽  
Grigore D. Pintilie ◽  
...  

AbstractThe Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of the substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we have determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) at 3.6 Å resolution in a substrate-engaged state. Substrate interactions are mediated by the dual pore-loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states; a closed AAA+ ring is nevertheless maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. The structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.


2019 ◽  
Vol 116 (31) ◽  
pp. 15475-15484 ◽  
Author(s):  
Zachary S. Hann ◽  
Cheng Ji ◽  
Shaun K. Olsen ◽  
Xuequan Lu ◽  
Michaelyn C. Lux ◽  
...  

The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures ofSchizosaccharomyces pombeUb E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
William C. H. Chao ◽  
Benjamin O. Wade ◽  
Céline Bouchoux ◽  
Andrew W. Jones ◽  
Andrew G. Purkiss ◽  
...  

Abstract Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central β hairpin and the C-terminal extension.


2017 ◽  
Vol 474 (2) ◽  
pp. 231-246 ◽  
Author(s):  
Leonor Morgado ◽  
Marta Bruix ◽  
P. Raj Pokkuluri ◽  
Carlos A. Salgueiro ◽  
David L. Turner

The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e−/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e−/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens.


2004 ◽  
Vol 78 (1) ◽  
pp. 302-313 ◽  
Author(s):  
Sompong Vongpunsawad ◽  
Numan Oezgun ◽  
Werner Braun ◽  
Roberto Cattaneo

ABSTRACT Measles virus (MV) enters cells either through the signaling lymphocyte activation molecule SLAM (CD150) expressed only in immune cells or through the ubiquitously expressed regulator of complement activation, CD46. To identify residues on the attachment protein hemagglutinin (H) essential for fusion support through either receptor, we devised a strategy based on analysis of morbillivirus H-protein sequences, iterative cycles of mutant protein production followed by receptor-based functional assays, and a novel MV H three-dimensional model. This model uses the Newcastle disease virus hemagglutinin-neuraminidase protein structure as a template. We identified seven amino acids important for SLAM- and nine for CD46 (Vero cell receptor)-induced fusion. The MV H three-dimensional model suggests (i) that SLAM- and CD46-relevant residues are located in contiguous areas in propeller β-sheets 5 and 4, respectively; (ii) that two clusters of SLAM-relevant residues exist and that they are accessible for receptor contact; and (iii) that several CD46-relevant amino acids may be shielded from direct receptor contacts. It appears likely that certain residues support receptor-specific H-protein conformational changes. To verify the importance of the H residues identified with the cell-cell fusion assays for virus entry into cells, we transferred the relevant mutations into genomic MV cDNAs. Indeed, we were able to recover recombinant viruses, and we showed that these replicate selectively in cells expressing SLAM or CD46. Selectively receptor-blind viruses will be used to study MV pathogenesis and may have applications for the production of novel vaccines and therapeutics.


2000 ◽  
Vol 74 (14) ◽  
pp. 6546-6555 ◽  
Author(s):  
Emma L. Nason ◽  
Siba K. Samal ◽  
B. V. Venkataram Prasad

ABSTRACT Aquareovirus, a member of the familyReoviridae, is a large virus with multiple capsid layers surrounding a genome composed of 11 segments of double-stranded RNA. Biochemical studies have shown that treatment with the proteolytic agent trypsin significantly alters the infectivity of the virus. The most infectious stage of the virus is produced by a 5-min treatment with trypsin. However, prolonged trypsin treatment almost completely abolishes the infectivity. We have used three-dimensional electron cryomicroscopy to gain insight into the structural basis of protease-induced alterations in infectivity by examining the structural changes in the virion at various time intervals of trypsin treatment. Our data show that after 5 min of trypsinization, projection-like spikes made of VP7 (35 kDa), associated with the underlying trimeric subunits, are completely removed. Concurrent with the removal of VP7, conformational changes are observed in the trimeric subunit composed of putative VP5 (71 kDa). The removal of VP7 and the accompanied structural changes may expose regions in the putative VP5 important for cell entry processes. Prolonged trypsinization not only entirely removes the outer capsid layer, producing the poorly infectious core particle, but also causes significant conformational changes in the turret protein. These changes result in shortening of the turret and narrowing of its central channel. The turret, as in orthoreoviruses, is likely to play a major role in the capping and translocation of mRNA during transcription, and the observed conformational flexibility in the turret protein may have implications in rendering the particle transcriptionally active or inactive.


Sign in / Sign up

Export Citation Format

Share Document