Coherently forming a single molecule in an optical trap

Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 331-335 ◽  
Author(s):  
Xiaodong He ◽  
Kunpeng Wang ◽  
Jun Zhuang ◽  
Peng Xu ◽  
Xiang Gao ◽  
...  

Ultracold single molecules have wide-ranging potential applications, such as ultracold chemistry, precision measurements, quantum simulation, and quantum computation. However, given the difficulty of achieving full control of a complex atom-molecule system, the coherent formation of single molecules remains a challenge. Here, we report an alternative route to coherently bind two atoms into a weakly bound molecule at megahertz levels by coupling atomic spins to their two-body relative motion in a strongly focused laser with inherent polarization gradients. The coherent nature is demonstrated by long-lived atom-molecule Rabi oscillations. We further manipulate the motional levels of the molecules and measure the binding energy precisely. This work opens the door to full control of all degrees of freedom in atom-molecule systems.

2020 ◽  
Vol 10 (4) ◽  
pp. 364-374
Author(s):  
Muhammad Shemyal Nisar ◽  
Yujun Cui ◽  
Kaitong Dang ◽  
Liyong Jiang ◽  
Xiangwei Zhao

Abstract Zero-mode waveguides have become important tools for the detection of single molecules. There are still, however, serious challenges because large molecules need to be packed into nano-holes. To circumvent this problem, we investigate and numerically simulate a novel planar sub-wavelength 3-dimension (3D) structure, which is named as near-field spot. It enables the detection of a single molecule in highly concentrated solutions. The near-field spot can produce evanescent waves at the dielectric/water interface, which exponentially decay as they travel away from the dielectric/water interface. These evanescent waves are keys for the detection of fluorescently tagged single molecules. A numerical simulation of the proposed device shows that the performance is comparable with a zero-mode waveguide. Additional degrees-of-freedom, however, can potentially supersede its performance.


2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


Biophysica ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 279-296
Author(s):  
Federico Fogolari ◽  
Gennaro Esposito

Estimation of solvent entropy from equilibrium molecular dynamics simulations is a long-standing problem in statistical mechanics. In recent years, methods that estimate entropy using k-th nearest neighbours (kNN) have been applied to internal degrees of freedom in biomolecular simulations, and for the rigorous computation of positional-orientational entropy of one and two molecules. The mutual information expansion (MIE) and the maximum information spanning tree (MIST) methods were proposed and used to deal with a large number of non-independent degrees of freedom, providing estimates or bounds on the global entropy, thus complementing the kNN method. The application of the combination of such methods to solvent molecules appears problematic because of the indistinguishability of molecules and of their symmetric parts. All indistiguishable molecules span the same global conformational volume, making application of MIE and MIST methods difficult. Here, we address the problem of indistinguishability by relabeling water molecules in such a way that each water molecule spans only a local region throughout the simulation. Then, we work out approximations and show how to compute the single-molecule entropy for the system of relabeled molecules. The results suggest that relabeling water molecules is promising for computation of solvation entropy.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan M. Szalai ◽  
Bruno Siarry ◽  
Jerónimo Lukin ◽  
David J. Williamson ◽  
Nicolás Unsain ◽  
...  

AbstractSingle-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule’s image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.


2008 ◽  
Vol 17 (04) ◽  
pp. 387-394 ◽  
Author(s):  
XIUDONG SUN ◽  
XUECONG LI ◽  
JIANLONG ZHANG

Orientating manipulations of cylindrical particles were performed by optical tweezers. Vertical and horizontal manipulations of Escherichia coli (E. coli) were carried out by changing the trapping depth and the focused laser beam shape. It was found that carbon nanotubes bundles (CNTBs) could be rotated in the linear polarized optical trap until it orientated its long axis along the linear polarization direction of the laser beam. However, E.coli could not be orientated in this way. Corresponding mechanisms were discussed based on the anisomeric electric characters of CNTBs. These orientation technologies of cylindrical objects with optical trap have potential applications in assembling nano-electric devices.


2014 ◽  
Vol 16 (42) ◽  
pp. 23150-23156 ◽  
Author(s):  
Jia Liu ◽  
Caleb M. Hill ◽  
Shanlin Pan ◽  
Haiying Liu

BODIPY dye single molecules on nanostructured substrates are studied with a single molecule spectroelectrochemistry technique to reveal the heterogeneous charge transfer mechanism.


Author(s):  
Reed A. Johnson ◽  
John J. O’Neill ◽  
Rodney L. Dockter ◽  
Timothy M. Kowalewski

Bioprinting technology has been rapidly increasing in popularity in the field of tissue engineering. Potential applications include tissue or organ regeneration, creation of biometric multi-layered skin tissue, and burn wound treatment [1]. Recent work has shown that living cells can be successfully applied using inkjet heads without damaging the cells [2]. Electrostatically driven inkjet systems have the benefit of not generating significant heat and therefore do not damage the cell structure. Inkjets have the additional benefit of depositing small droplets with micrometer resolution and therefore can be used to build up tissue like structures. Previous attempts at tracking and drawing on a hand include either direct contact with the hand [3] or tracking the hand only in two degrees of freedom [4]. In this work we present an approach to track a hand with three degrees of freedom and accurately apply a substance contact free to the hand in a desired pattern using a bioprinting compatible inkjet. The third degree of freedom, in this case depth from the hand surface, provides improved control over the distance between the inkjet head and object, thus increasing deposition accuracy.


2020 ◽  
Vol 153 (1) ◽  
Author(s):  
Gregory I. Mashanov ◽  
Tatiana A. Nenasheva ◽  
Tatiana Mashanova ◽  
Catherine Maclachlan ◽  
Nigel J.M. Birdsall ◽  
...  

Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein–coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.


Sign in / Sign up

Export Citation Format

Share Document