Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation

Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. 287-291 ◽  
Author(s):  
Lucas J. Ustick ◽  
Alyse A. Larkin ◽  
Catherine A. Garcia ◽  
Nathan S. Garcia ◽  
Melissa L. Brock ◽  
...  

Nutrient supply regulates the activity of phytoplankton, but the global biogeography of nutrient limitation and co-limitation is poorly understood. Prochlorococcus adapt to local environments by gene gains and losses, and we used genomic changes as an indicator of adaptation to nutrient stress. We collected metagenomes from all major ocean regions as part of the Global Ocean Ship-based Hydrographic Investigations Program (Bio-GO-SHIP) and quantified shifts in genes involved in nitrogen, phosphorus, and iron assimilation. We found regional transitions in stress type and severity as well as widespread co-stress. Prochlorococcus stress genes, bottle experiments, and Earth system model predictions were correlated. We propose that the biogeography of multinutrient stress is stoichiometrically linked by controls on nitrogen fixation. Our omics-based description of phytoplankton resource use provides a nuanced and highly resolved description of nutrient stress in the global ocean.

2020 ◽  
Author(s):  
Wei-Lei Wang ◽  
Guisheng Song ◽  
François Primeau ◽  
Eric S. Saltzman ◽  
Thomas G. Bell ◽  
...  

Abstract. Marine dimethyl sulfide (DMS) is important to climate due to the ability of DMS to alter Earth's radiation budget. However, a knowledge of the global-scale distribution, seasonal variability, and sea-to-air flux of DMS is needed in order to understand the factors controlling surface ocean DMS and its impact on climate. Here we examine the use of an artificial neural network (ANN) to extrapolate available DMS measurements to the global ocean and produce a global climatology with monthly temporal resolution. A global database of 57 810 ship-based DMS measurements in surface waters was used along with a suite of environmental parameters consisting of lat-lon coordinates, time-of-day, time-of-year, solar radiation, mixed layer depth, sea surface temperature, salinity, nitrate, phosphate, silicate, and oxygen. Linear regressions of DMS against the environmental parameters show that on a global scale mixed layer depth and solar radiation are the strongest predictors of DMS, however, they capture 14 % and 12 % of the raw DMS data variance, respectively. The multi-linear regression can capture more (∼29 %) of the raw data variance, but strongly underestimates high DMS concentrations. In contrast, the ANN captures ~61 % of the raw data variance in our database. Like prior climatologies our results show a strong seasonal cycle in DMS concentration and sea-to-air flux. The highest concentrations (fluxes) occur in the high-latitude oceans during the summer. We estimate a lower global sea-to-air DMS flux (17.90 ± 0.34 Tg S yr−1) than the prior estimate based on a map interpolation method when the same gas transfer velocity parameterization is used.


2018 ◽  
Author(s):  
Ramiro Logares ◽  
Ina M. Deutschmann ◽  
Caterina. R. Giner ◽  
Anders K. Krabberød ◽  
Thomas S. B. Schmidt ◽  
...  

ABSTRACTThe smallest members of the sunlit-ocean microbiome (prokaryotes and picoeukaryotes) participate in a plethora of ecosystem functions with planetary-scale effects. Understanding the processes determining the spatial turnover of this assemblage can help us better comprehend the links between microbiome species composition and ecosystem function. Ecological theory predicts thatselection,dispersalanddriftare main drivers of species distributions, yet, the relative quantitative importance of these ecological processes in structuring the surface-ocean microbiome is barely known. Here we quantified the role of selection, dispersal and drift in structuring surface-ocean prokaryotic and picoeukaryotic assemblages by using community DNA-sequence data collected during the global Malaspina expedition. We found that dispersal limitation was the dominant process structuring picoeukaryotic communities, while a balanced combination of dispersal limitation, selection and drift shaped prokaryotic counterparts. Subsequently, we determined the agents exerting abiotic selection as well as the spatial patterns emerging from the action of different ecological processes. We found that selection exerted via temperature had a strong influence on the structure of prokaryotic communities, particularly on species co-occurrences, a pattern not observed among communities of picoeukaryotes. Other measured abiotic variables had limited selective effects on microbiome structure. Picoeukaryotes presented a higher differentiation between neighbouring communities and a higher distance-decay when compared to prokaryotes, agreeing with their higher dispersal limitation. Finally, drift seemed to have a limited role in structuring the sunlit-ocean microbiome. The different predominance of ecological processes acting on particular subsets of the ocean microbiome suggests uneven responses to environmental change.SIGNIFICANCE STATEMENTThe global ocean contains one of the largest microbiomes on Earth and changes on its structure can impact the functioning of the biosphere. Yet, we are far from understanding the mechanisms that structure the global ocean microbiome, that is, the relative importance of environmentalselection,dispersaland random events (drift). We evaluated the role of these processes at the global scale, based on data derived from a circumglobal expedition and found that these ecological processes act differently on prokaryotes and picoeukaryotes, two of the main components of the ocean microbiome. Our work represents a significant contribution to understand the assembly of marine microbial communities, providing also insights on the links between ecological mechanisms, microbiome structure and ecosystem function.


2019 ◽  
Author(s):  
Micah N. Scholer ◽  
Matt Strimas-Mackey ◽  
Jill E. Jankowski

AbstractTropical birds are purported to be longer lived than temperate species of similar size, but it has not been shown whether avian survival rates covary with a latitudinal gradient worldwide. Here, we perform a global-scale meta-analysis to investigate the extent of the latitudinal survival gradient. We modeled survival as a function of latitude for the separate northern and southern hemispheres, and considered phylogenetic relationships and extrinsic (climate) and intrinsic (life history) predictors hypothesized to moderate these effects. Using a database of 1,004 estimates from 246 studies of avian survival, we demonstrate that in general a latitudinal survival gradient exists in the northern hemisphere, is dampened or absent for southern hemisphere species, and that survival rates of passerine birds largely account for these trends. We found no indication that the extrinsic climate factors were better predictors of survival than latitude alone, but including species’ intrinsic traits improved model predictions. Notably, species with smaller clutch size and larger body mass showed higher survival. Our results illustrate that while some tropical birds may be longer lived than their temperate counterparts, the shape of the latitude-survival gradient differs by geographic region and is strongly influenced by species’ intrinsic traits.


2020 ◽  
Vol 154 (3) ◽  
pp. 353-361
Author(s):  
Scott Hilliard Berg ◽  
Cathy Meade Massoud ◽  
Colleen Jackson-Cook ◽  
Sosipatros Alexander Boikos ◽  
Steven Christopher Smith ◽  
...  

Abstract Objectives Superficial pleomorphic liposarcoma (PL) has a favorable prognosis compared to deeply seated PL. Given developments in the classification of lipomatous neoplasms, we reappraised a series of cases. Methods Retrospective clinicopathologic evaluation and genome-wide single-nucleotide polymorphism (SNP) microarray studies were performed for cases previously designated superficial PL. Results Four cases were identified (age, 48-70 years). Two were dermally confined, whereas two were superficial subcutaneous; no recurrences or metastases were reported. Tumors demonstrated pleomorphic spindled morphology with variable cellularity. Multivacuolated atypical lipoblasts were focal in 3 and abundant in 1. Dermal tumors demonstrated atypical cells within sclerotic collagen. Genome-wide SNP microarray studies revealed consistent gains and losses, including losses at the 13q14.2 locus encompassing RB1 and DLEU2 and deletion/disruption of the TP53 locus. Although subcutaneous examples showed genomic changes similar to deep PL, the dermal examples showed fewer genetic alterations, including changes reported in the spectrum of atypical spindle cell/pleomorphic lipomatous tumors (ASPLT). All lacked MDM2 amplification. Conclusions Careful integration of histologic and genetic features may improve classification of lipomatous neoplasms with atypia, allowing reclassification of some superficial PL as ASPLT.


2007 ◽  
Vol 37 (10) ◽  
pp. 2550-2562 ◽  
Author(s):  
Rick Lumpkin ◽  
Kevin Speer

Abstract A decade-mean global ocean circulation is estimated using inverse techniques, incorporating air–sea fluxes of heat and freshwater, recent hydrographic sections, and direct current measurements. This information is used to determine mass, heat, freshwater, and other chemical transports, and to constrain boundary currents and dense overflows. The 18 boxes defined by these sections are divided into 45 isopycnal (neutral density) layers. Diapycnal transfers within the boxes are allowed, representing advective fluxes and mixing processes. Air–sea fluxes at the surface produce transfers between outcropping layers. The model obtains a global overturning circulation consistent with the various observations, revealing two global-scale meridional circulation cells: an upper cell, with sinking in the Arctic and subarctic regions and upwelling in the Southern Ocean, and a lower cell, with sinking around the Antarctic continent and abyssal upwelling mainly below the crests of the major bathymetric ridges.


2006 ◽  
Vol 3 (4) ◽  
pp. 1011-1063
Author(s):  
Z. Lachkar ◽  
J. C. Orr ◽  
J.-C. Dutay ◽  
P. Delecluse

Abstract. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of transient tracers. We made global anthropogenic transient-tracer simulations in non-eddying (2°cosφ×2°, ORCA2) and eddying (½°cosφ×½°, ORCA05) versions of the ocean general circulation model OPA9. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on global and regional bomb Δ14C uptake and storage. Yet for anthropogenic CO2 and CFC-11, increased eddy activity reduces southern extratropical uptake by 28% and 25% respectively. There is a similar decrease in corresponding inventories, which provides better agreement with observations. With higher resolution, eddies strengthen upper ocean vertical stratification and reduce excessive ventilation of intermediate waters by 20% between 60° S and 40° S. By weakening the Residual Circulation, i.e., the sum of Eulerian mean flow and the opposed eddy-induced flow, eddies reduce the supply of tracer-impoverished deep waters to the surface near the Antarctic divergence, thus reducing the air-sea tracer flux. Consequently, inventories for both CFC-11 and anthropogenic CO2 decrease because their mixed layer concentrations in that region equilibrate with the atmosphere on relatively short time scales (15 days and 6 months, respectively); conversely, the slow air-sea equilibration of bomb Δ14C of 6 years, gives surface waters little time to exchange with the atmosphere before they are subducted.


2016 ◽  
Author(s):  
F. Abrantes ◽  
P. Cermeño ◽  
C. Lopes ◽  
O. Romero ◽  
L. Matos ◽  
...  

Abstract. Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica–precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. At the global-scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.


2021 ◽  
Author(s):  
Ian A Hatton ◽  
Ryan F Heneghan ◽  
Yinon M Bar-On ◽  
Eric D Galbraith

It has long been hypothesized that aquatic biomass is evenly distributed among logarithmic body mass size-classes. Although this community structure has been observed locally among plankton groups, its generality has never been formally tested across all marine life, nor have its impacts by humans been broadly assessed. Here, we bring together data at the global scale to test the hypothesis from bacteria to whales. We find that biomass within most order of magnitude size-classes is indeed remarkably constant, near 1 Gt wet weight (10^15 grams), but that bacteria and whales are markedly above and below this value, respectively. Furthermore, human impacts have significantly truncated the upper one-third of the spectrum. Size-spectrum theory has yet to provide an explanation for what is possibly life's largest scale regularity.


2021 ◽  
pp. 1-47
Author(s):  
Xinfeng Liang ◽  
Chao Liu ◽  
Rui M. Ponte ◽  
Don P. Chambers

AbstractOcean heat content (OHC) is key to estimating the energy imbalance of the earth system. Over the past two decades, an increasing number of OHC studies were conducted using oceanic objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA products with a focus on their robust features and significant differences over the Argo period (2005-2019), when the most reliable global scale oceanic measurements are available. For the global ocean, robust warming in the upper 2000 m is confirmed. The 0-300 m layer shows the highest warming rate but is heavily modulated by interannual variability, particularly the El Niño–Southern Oscillation. The 300-700 m and 700-2000 m layers, on the other hand, show unabated warming. Regionally, the Southern Ocean and mid-latitude North Atlantic show a substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few apparent differences in OHC among the examined OA products were identified. In particular, temporal means of a few OA products that incorporated other ocean measurements besides Argo show a global-scale cooling difference, which is likely related to the baseline climatology fields used to generate those products. Large differences also appear in the interannual variability in the Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences remind us of the possibility of product-dependent conclusions on OHC variations. Caution is therefore warranted when using merely one OA product to conduct OHC studies, particularly in regions and on timescales that display significant differences.


2021 ◽  
Vol 18 (2) ◽  
pp. 509-534
Author(s):  
David Ford

Abstract. A set of observing system simulation experiments was performed. This assessed the impact on global ocean biogeochemical reanalyses of assimilating chlorophyll from remotely sensed ocean colour and in situ observations of chlorophyll, nitrate, oxygen, and pH from a proposed array of Biogeochemical-Argo (BGC-Argo) floats. Two potential BGC-Argo array distributions were tested: one for which biogeochemical sensors are placed on all current Argo floats and one for which biogeochemical sensors are placed on a quarter of current Argo floats. Assimilating BGC-Argo data greatly improved model results throughout the water column. This included surface partial pressure of carbon dioxide (pCO2), which is an important output of reanalyses. In terms of surface chlorophyll, assimilating ocean colour effectively constrained the model, with BGC-Argo providing no added benefit at the global scale. The vertical distribution of chlorophyll was improved by assimilating BGC-Argo data. Both BGC-Argo array distributions gave benefits, with greater improvements seen with more observations. From the point of view of ocean reanalysis, it is recommended to proceed with development of BGC-Argo as a priority. The proposed array of 1000 floats will lead to clear improvements in reanalyses, with a larger array likely to bring further benefits. The ocean colour satellite observing system should also be maintained, as ocean colour and BGC-Argo will provide complementary benefits.


Sign in / Sign up

Export Citation Format

Share Document