Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma

2019 ◽  
Vol 11 (491) ◽  
pp. eaau1167 ◽  
Author(s):  
Liang Zhang ◽  
Yixin Yao ◽  
Shaojun Zhang ◽  
Yang Liu ◽  
Hui Guo ◽  
...  

Metabolic reprogramming is linked to cancer cell growth and proliferation, metastasis, and therapeutic resistance in a multitude of cancers. Targeting dysregulated metabolic pathways to overcome resistance, an urgent clinical need in all relapsed/refractory cancers, remains difficult. Through genomic analyses of clinical specimens, we show that metabolic reprogramming toward oxidative phosphorylation (OXPHOS) and glutaminolysis is associated with therapeutic resistance to the Bruton’s tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma (MCL), a B cell lymphoma subtype with poor clinical outcomes. Inhibition of OXPHOS with a clinically applicable small molecule, IACS-010759, which targets complex I of the mitochondrial electron transport chain, results in marked growth inhibition in vitro and in vivo in ibrutinib-resistant patient-derived cancer models. This work suggests that targeting metabolic pathways to subvert therapeutic resistance is a clinically viable approach to treat highly refractory malignancies.

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2120 ◽  
Author(s):  
Diana Malarikova ◽  
Adela Berkova ◽  
Ales Obr ◽  
Petra Blahovcova ◽  
Michael Svaton ◽  
...  

Mantle cell lymphoma (MCL) is a subtype of B-cell lymphoma with a large number of recurrent cytogenetic/molecular aberrations. Approximately 5–10% of patients do not respond to frontline immunochemotherapy. Despite many useful prognostic indexes, a reliable marker of chemoresistance is not available. We evaluated the prognostic impact of seven recurrent gene aberrations including tumor suppressor protein P53 (TP53) and cyclin dependent kinase inhibitor 2A (CDKN2A) in the cohort of 126 newly diagnosed consecutive MCL patients with bone marrow involvement ≥5% using fluorescent in-situ hybridization (FISH) and next-generation sequencing (NGS). In contrast to TP53, no pathologic mutations of CDKN2A were detected by NGS. CDKN2A deletions were found exclusively in the context of other gene aberrations suggesting it represents a later event (after translocation t(11;14) and aberrations of TP53, or ataxia telangiectasia mutated (ATM)). Concurrent deletion of CDKN2A and aberration of TP53 (deletion and/or mutation) represented the most significant predictor of short EFS (median 3 months) and OS (median 10 months). Concurrent aberration of TP53 and CDKN2A is a new, simple, and relevant index of chemoresistance in MCL. Patients with concurrent aberration of TP53 and CDKN2A should be offered innovative anti-lymphoma therapy and upfront consolidation with allogeneic stem cell transplantation.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Mingkai Zhang ◽  
Yang Gao ◽  
Jialiang Wang ◽  
Zhanbo Liu ◽  
Zaishun Jin ◽  
...  

In order to determine a particular tumor cell via nanomaterials, we introduce the preparation of CD20 and CD5 coupled nanoprobes (denoted as CD20 and CD5 nanoprobes for convenience) and an application in identification of mantle cell lymphoma (MCL) from B-cell lymphoma. In this work, CD20 and CD5 nanoprobes were prepared by selectively oxidizing the carbon-carbon double bonds of oleate ligands on the surfaces of NaYF4:Yb3+,Tm3+ and NaYF4:Yb3+,Er3+ nanoparticles and, respectively, coupling carboxyl groups on the particles’ surfaces with CD20 and CD5 monoclonal antibodies through EDC/NHS crosslinking agents. After in situ hybridized Jeko-1 cells and Raji cells as a reference with CD20 and CD5 nanoprobes, in vitro double-color upconversion fluorescence imaging of Jeko-1 cells was demonstrated through visualization of blue and green fluorescence under a 980 nm laser excitation. Moreover, in vivo upconversion fluorescence imaging of the transplanted cancer model was also measured. These experimental results indicate that Jeko-1 cells have been specifically labeled by CD20 and CD5 nanoprobes. It is therefore concluded that CD20 and CD5 nanoprobes could be used to specially differentiate mantle cell lymphoma (MCL) from B-cell lymphoma.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 268-276 ◽  
Author(s):  
LR Zukerberg ◽  
WF Benedict ◽  
A Arnold ◽  
N Dyson ◽  
E Harlow ◽  
...  

Abstract The product of the retinoblastoma tumor-suppressor gene (pRB), a nuclear phosphoprotein that regulates transcription factors such as E2F, is involved in cell cycle control and differentiation. Its activity is regulated by phosphorylation; the underphosphorylated form inhibits transcription whereas the highly phosphorylated form is inactive. Cyclin D1 and its associated kinase (CDK 4/6) phosphorylate pRB in vitro, and therefore are thought to contribute to the regulation of pRB function. To examine the effect of cyclin D1 overexpression on pRB in primary tumor tissue, we studied pRB expression in low-grade B- cell neoplasms, with particular regard to mantle cell lymphoma, which is characterized by cyclin D1 (bcl-1) overexpression. pRB expression was studied by immunostaining with a well-characterized anti-pRB antibody; the phosphorylation status of pRB was examined by immunoblots; and the functional binding capacity of pRB was examined by in vitro binding to adenovirus E1A protein. We studied 3 reactive lymph nodes, 28 low grade B-cell lymphomas, 4 cases of hairy cell leukemia (HCL) and 3 plasmacytomas. Reactive lymph nodes showed intense pRB staining of germinal centers, with strongest (2+) staining in the large cells (centroblasts) of the proliferating (dark) zone and weak or no staining of small lymphocytes, including those of the mantle zone. In B- chronic lymphocytic leukemia (B-CLL) (4 cases), follicular lymphoma (3 cases) and mucosa-associated (MALT) lymphoma (3 cases) strong (2+) pRB staining was limited to centroblasts in reactive and neoplastic follicles and occasional proliferation centers, with only faint staining of small lymphoid cells. In contrast, 15 of 16 cases of mantle cell lymphoma showed strong (1–2+) staining of most cells; one blastoid mantle cell lymphoma showed only faint pRB staining. All cases of (HCL) and plasmacytoma showed strong pRB staining. Although most lymphomas with strong pRB expression were cyclin D1(+), three cyclin D1(+) cases showed only weak pRB expression (1 B-CLL, 1 blastoid mantle cell, 1 unclassifiable low grade B-cell lymphoma). Conversely, of the 4 pRB(+) HCLs and 3 pRB(+) plasmacytomas, only 1 of each was cyclin D1(+). pRB appeared to exist primarily in the underphosphorylated (fastest migrating) form on Western blot, despite the fact that cyclin D1 was complexed to CDK4, a form in which it normally phosphorylates pRB. In addition, pRB appeared to be unmutated, because it bound normally to the adenovirus E1A protein and showed nuclear localization by immunostaining. We conclude that most cases of mantle cell lymphoma, HCL, and plasmacytoma show high levels of pRB in contrast to follicle center lymphoma and small lymphocytic lymphoma; however, pRB expression does not appear to be consistently related to cyclin D1 overexpression. The pRB appears to be unmutated and underphosphorylated, and therefore should be in its active form. Our data from primary lymphoma tissue suggests that overexpression of cyclin D1, whereas tumorigenic, does not lead to pRB loss or hyperphosporylation. Thus, the mechanism by which cyclin D1 contributes to tumorigenesis and the significance of the restricted expression of pRB in low-grade lymphoid neoplasms remain to be determined.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4756-4756 ◽  
Author(s):  
Gwyn Bebb ◽  
Huong Muzik ◽  
Sophia Nguyen ◽  
Don Morris ◽  
Douglas A. Stewart

Abstract Introduction Mantle cell lymphoma (MCL), an incurable B cell lymphoma, consistently over expresses bcl-2 despite not carrying the t(14;18). The attenuation of apoptosis by bcl-2 is thought to contribute to the malignant process and increase resistance to some cytotoxic agents. We recently demonstrated that GX15-070, a small molecular inhibitor of the BH3 binding groove of bcl-2, has activity against MCL cell lines in vitro. We set out to assess the effect of GX15-070 alone and in combination with Vincristine on the viability of MCL cells in vitro and in vivo. Methods 3 previously characterized bcl-2 over expressing MCL cell lines (JVM-2, Hbl-2, granta) were used. Cells were grown in standard media and exposed to a range of concentrations of GX15-070 with and without Vincristine. Dose-response was assessed by measuring viability at 48 hours using the WST-1 assay. In vivo experiments were conducted on immune deficient mice in which 5×106 cells were injected in the flank then treated IV with GX15-070 (q 2days × 5 doses), Vincristine (q4 days × 3 doses) or both starting 5 days later. Tumours were measured three times weekly. Results All three MCL cell lines over-expressed bcl-2 by western blot. Each MCL cell line showed sensitivity to GX15-070 at a range of concentrations. The addition of GX15-070 to low dose Vincristine (10−6) caused significant growth inhibition of each MCL cell line (see table 1). Discussion Our results demonstrate that using GX15-070 to target bcl-2 is an effective anti neoplastic approach against MCL cell lines in vitro. In addition, our results suggest that combining Vincristine and GX15-070 is a promising strategy in treating MCL. In vivo experiments to confirm this additive activity are still ongoing and will be presented in full. Initial impressions suggest that there is a rationale for the addition of GX15-070 to current cytotoxic regimens used to treat MCL in the setting of clinical trials. Table 1: Effect of Vincristine and GX15-070 on in vitro growth of 3 MCL cell lines Growth as % age of Control Cell Line JVM-2 HBL-2 Granta Vincristine alone (10-6 mg/ml) 92% 48% 89% GX15-070 alone (0.08 uM) 75% 76% 60% Vincristine 10-6 mg/ml and GX15-070 0.08 uM 52% 24% 52%


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4997-4997
Author(s):  
Andrea Rinaldi ◽  
Emilia Ceresa ◽  
Davide Rossi ◽  
Gianluca Gaidano ◽  
Shanta Bantia ◽  
...  

Abstract Mantle cell lymphoma (MCL) represents a subtype of B-cell lymphoma associated with a very unfavourable clinical outcome. Currently no therapy can be considered as standard, and new therapeutic approaches are needed. Forodesine is a potent inhibitor of purine nucleoside phosphorylase (PNP), whose major role is to catalyze the cleavage of inosine, deoxyinosine guanosine, and deoxyguanosine (dGuo) to their corresponding base and sugar 1-phosphate by phosphorolysis. In the presence of deoxycytidine kinase, PNP inhibition leads to an increase in the concentration of dGuo triphosphate (dGTP), followed by inhibition of DNA synthesis and cell death by apoptosis. When combined with dGuo, forodesine has been shown to have in vitro cytotoxic activity on T-cell (T-ALL, T-PLL) and on B-cell malignancies (CLL, B-ALL), and Phase I/II trials are on going in CLL and CTCL patients. Here, we report the first data on in vitro activity of forodesine in MCL. Primary MCL cells, derived from six patients, were exposed to forodesine (0, 2, 20 μM) in combination with dGuo (0, 10, 20 μM), for 48 hrs. Cells were cultured in X-VIVO 10 medium (Cambrex) with 10% FBS. Cell viability was assessed by flow cytometry with the Annexin V - propidium iodide assay. Four patient samples (67%) showed an increase in the number of Annexin V positive cells ranging from 1.9 to 5.3 times compared to untreated cells. The effect was larger for 20 μM forodesine compared with 2 μM. There was no effect of dGuo alone and only a minimal effect of increasing dGuo concentration from 10 μM to 20 μM. Cell lines did not appear to be ideal models to evaluate the efficacy of forodesine in vitro. Three established MCL cell lines (Granta-519, Rec, JeKo1) were treated with escalating doses of forodesine, but the results were not reproducible, while the same cells showed expected IC50 values between 25–30 μM when exposed to bendamustine for 72 hrs. In conclusion, the in vitro data reported here with 4/6 MCL patients primary samples sensitive to forodesine and the results from various groups on other T- and B-cell malignancies suggest that clinical trials of forodesine in MCL may be warranted.


2016 ◽  
Vol 23 (3) ◽  
pp. 235-239 ◽  
Author(s):  
Varinder Kaur ◽  
Arjun Swami

Mantle cell lymphoma accounts for 5–7% of all non-Hodgkin’s lymphomas. Under the current WHO classification, it is categorized as an indolent B cell lymphoma, but has an aggressive clinical course. New insights into leukemogenic molecular pathways of mantle cell lymphoma have uncovered unique therapeutic targets. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, is the newest drug in the arsenal that has shown promising efficacy in relapsed mantle cell lymphoma. Long-term studies have shown that grade 3 or 4 adverse events are infrequent. Asymptomatic lymphocytosis is frequently seen with ibrutinib use in mantle cell lymphoma; however, tumor lysis syndrome is an extremely rare complication. To date, only two patients with ibrutinib-associated tumor lysis syndrome in mantle cell lymphoma have been described in a long-term follow-up study. Both patients met laboratory criteria for tumor lysis syndrome, however, but did not develop clinical tumor lysis syndrome. We, here describe a patient with relapsed mantle cell lymphoma who developed clinical tumor lysis syndrome with ibrutinib monotherapy.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 268-276 ◽  
Author(s):  
LR Zukerberg ◽  
WF Benedict ◽  
A Arnold ◽  
N Dyson ◽  
E Harlow ◽  
...  

The product of the retinoblastoma tumor-suppressor gene (pRB), a nuclear phosphoprotein that regulates transcription factors such as E2F, is involved in cell cycle control and differentiation. Its activity is regulated by phosphorylation; the underphosphorylated form inhibits transcription whereas the highly phosphorylated form is inactive. Cyclin D1 and its associated kinase (CDK 4/6) phosphorylate pRB in vitro, and therefore are thought to contribute to the regulation of pRB function. To examine the effect of cyclin D1 overexpression on pRB in primary tumor tissue, we studied pRB expression in low-grade B- cell neoplasms, with particular regard to mantle cell lymphoma, which is characterized by cyclin D1 (bcl-1) overexpression. pRB expression was studied by immunostaining with a well-characterized anti-pRB antibody; the phosphorylation status of pRB was examined by immunoblots; and the functional binding capacity of pRB was examined by in vitro binding to adenovirus E1A protein. We studied 3 reactive lymph nodes, 28 low grade B-cell lymphomas, 4 cases of hairy cell leukemia (HCL) and 3 plasmacytomas. Reactive lymph nodes showed intense pRB staining of germinal centers, with strongest (2+) staining in the large cells (centroblasts) of the proliferating (dark) zone and weak or no staining of small lymphocytes, including those of the mantle zone. In B- chronic lymphocytic leukemia (B-CLL) (4 cases), follicular lymphoma (3 cases) and mucosa-associated (MALT) lymphoma (3 cases) strong (2+) pRB staining was limited to centroblasts in reactive and neoplastic follicles and occasional proliferation centers, with only faint staining of small lymphoid cells. In contrast, 15 of 16 cases of mantle cell lymphoma showed strong (1–2+) staining of most cells; one blastoid mantle cell lymphoma showed only faint pRB staining. All cases of (HCL) and plasmacytoma showed strong pRB staining. Although most lymphomas with strong pRB expression were cyclin D1(+), three cyclin D1(+) cases showed only weak pRB expression (1 B-CLL, 1 blastoid mantle cell, 1 unclassifiable low grade B-cell lymphoma). Conversely, of the 4 pRB(+) HCLs and 3 pRB(+) plasmacytomas, only 1 of each was cyclin D1(+). pRB appeared to exist primarily in the underphosphorylated (fastest migrating) form on Western blot, despite the fact that cyclin D1 was complexed to CDK4, a form in which it normally phosphorylates pRB. In addition, pRB appeared to be unmutated, because it bound normally to the adenovirus E1A protein and showed nuclear localization by immunostaining. We conclude that most cases of mantle cell lymphoma, HCL, and plasmacytoma show high levels of pRB in contrast to follicle center lymphoma and small lymphocytic lymphoma; however, pRB expression does not appear to be consistently related to cyclin D1 overexpression. The pRB appears to be unmutated and underphosphorylated, and therefore should be in its active form. Our data from primary lymphoma tissue suggests that overexpression of cyclin D1, whereas tumorigenic, does not lead to pRB loss or hyperphosporylation. Thus, the mechanism by which cyclin D1 contributes to tumorigenesis and the significance of the restricted expression of pRB in low-grade lymphoid neoplasms remain to be determined.


Blood ◽  
2006 ◽  
Vol 107 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Patricia Pérez-Galán ◽  
Gaël Roué ◽  
Neus Villamor ◽  
Emili Montserrat ◽  
Elias Campo ◽  
...  

Abstract Mantle-cell lymphoma (MCL) is a mature B-cell lymphoma with an aggressive course and generally poor prognosis. Conventional chemotherapy has little efficacy. Bortezomib is a novel, reversible, and highly specific proteasome inhibitor that appears as a new hope for MCL treatment. We have analyzed the in vitro sensitivity to bortezomib in 4 MCL cell lines and in primary tumor cells from 10 MCL patients. Bortezomib induced phosphatidylserine exposure, mitochondrial depolarization, ROS generation, Bax and Bak conformational changes, and caspase activation. In addition, ROS scavengers, but not pancaspase inhibitors, blocked all apoptosis hallmarks. Protein and mRNA-expression analysis, revealed marked up-regulation of the BH3-only protein Noxa, between 4 to 6 hours after bortezomib addition, independent of p53 status. However, this up-regulation was faster and higher in cells with functional p53. Noxa RNA interference markedly decreased sensitivity to bortezomib, pointing to this protein as a key mediator between proteasome inhibition and mitochondrial depolarization in MCL cells. Noxa interacts with the antiapoptotic protein Mcl-1 and promotes Bak release from Mcl-1, suggesting that up-regulation of Noxa might counteract Mcl-1 accumulation after bortezomib treatment. These findings should be useful to extend the therapeutic strategies in MCL patients and to improve their prognosis.


Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4441-4449 ◽  
Author(s):  
Patricia Pérez-Galán ◽  
Gaël Roué ◽  
Neus Villamor ◽  
Elias Campo ◽  
Dolors Colomer

AbstractMantle cell lymphoma (MCL) is an aggressive B-cell lymphoma resistant to conventional chemotherapy. The Bcl-2 pathway is deregulated in these tumors and may represent an interesting target for new therapeutic strategies. The new small-molecule pan–Bcl-2 inhibitor GX15-070 mimics BH3-only proteins by binding to multiple antiapoptotic Bcl-2 members. Here we show that GX15-070 induced apoptosis in vitro in MCL cell lines and primary cells from patients with MCL by releasing Bak from Mcl-1 and Bcl-XL at short incubation times and low micromolar doses. GX15-070 was effective in cells bearing defective DNA damage-sensor genes or cell-cycle regulators, inducing Bax and Bak conformational changes, mitochondrial depolarization, phosphatidylserine exposure, and caspase-3 activation. Furthermore, GX15-070 synergized with bortezomib, sensitizing MCL cells to low doses of this proteasome inhibitor, by neutralizing bortezomib-induced Mcl-1 accumulation and cooperating with Noxa to induce Bak displacement from this protein. These events led to an increased activation of the mitochondrial apoptotic pathway. Importantly, GX15-070 alone or in combination with bortezomib showed no significant cytotoxic effect in peripheral blood mononuclear cells from healthy donors. All these findings suggest that GX15-070 alone or in combination with bortezomib represents a new attractive therapeutic approach for MCL treatment.


Sign in / Sign up

Export Citation Format

Share Document