scholarly journals In Vitro Profiling of Anti-tubercular Compounds by Rapid, Efficient, and Non-Destructive Assays Using Auto-luminescent Mycobacterium tuberculosis

Author(s):  
Gauri S. Shetye ◽  
Kyung Bae Choi ◽  
Chang-Yub Kim ◽  
Scott G. Franzblau ◽  
Sanghyun Cho

Anti-infective drug discovery is greatly facilitated by the availability of in vitro assays that are more proficient at predicting the preclinical success of screening hits. TB drug-discovery is hindered by the relatively slow growth rate of Mycobacterium , and the use of whole cell-based in vitro assays that are inherently time consuming and for these reasons, rapid, non-invasive bioluminescence-based assays have been widely used in anti-TB drug discovery and development. In this study, in vitro assays that employ auto-luminescent M. tuberculosis (Mtb) were optimized to determine MIC, minimum bactericidal concentration (MBC), time-kill curves, activity against macrophage internalized Mtb (EC 90 ), and post-antibiotic effect (PAE), to provide rapid and dynamic biological information. Standardization of the luminescence-based MIC, MBC, time-kill, EC 90, and PAE assays was accomplished by comparing results of established TB drugs and two ClpC1-targeting TB leads, ecumicin and rufomycin, to those obtained from conventional assays and/or to previous studies. Cumulatively, the use of the various streamlined luminescence based in vitro assays has reduced the time for comprehensive in vitro profiling (MIC, MBC, time-kill, EC 90, and PAE) by 2 months. The luminescence-based in vitro MBC and EC 90 assays yield time and concentration-dependent kill information that can be used for PK/PD modelling. The MBC and EC 90 time kill graphs revealed a significantly more rapid bactericidal activity for ecumicin than rufomycin. The PAEs of both ecumicin and rufomycin were comparable to that of the first line TB drug rifampin. The optimization of several non-destructive, luminescence-based TB assays facilitates the in vitro profiling of TB drug leads in an efficient manner.

2021 ◽  
Vol 8 (1) ◽  
pp. 160-165
Author(s):  
Masaaki Minami ◽  
Takafumi Ando ◽  
Hidemi Goto ◽  
Michio Ohta

Mupirocin (MUP) is an effective antibiotic against MRSA. Its bactericidal effect is stable under acid condition. By validating its antibacterial effect of Helicobacter pylori, we try to clarify MUP effect on H. pylori. The present study was conducted to investigate the effect of MUP on clarithromycin (CLR) / metronidazole (MNZ) -resistant and -susceptible strains of H. pylori, the time-kill effect of MUP, and the post antibiotic effect (PAE). We investigated the minimal inhibitory concentration (MIC) and the minimal bactericidal effect (MBC) of MUP against 140 H. pylori, which include clinical strains, ATCC43504, 26695 and J99. Ten of them were CLR -resistant strains and 3 were MNZ-resistant strains. The MIC90 and MBC of MUP on all 140 strains is 0.064 μg / ml, and 0.1 μg / ml, respectively. There were no differences of MUP effect between susceptible and resistant strains either for CLR or MNZ. Time-kill curve test and PAE test of MUP on ATCC43504 were performed. By adding MUP, time-kill curve showed that bacterial quantities decreased in dose and time-dependent manner. No viable colony was found after 12-hour culture with 0.1 μg / ml MUP. The value of PAE is 12. MUP is a potential effective antibiotic for H. pylori even those for CLR / MNZ -resistant strains.


Author(s):  
Anders N Kristoffersson ◽  
Caterina Bissantz ◽  
Rusudan Okujava ◽  
Andreas Haldimann ◽  
Isabelle Walter ◽  
...  

Abstract Background Diazabicyclooctanes (DBOs) are an increasingly important group of non β-lactam β-lactamase inhibitors, employed clinically in combinations such as ceftazidime/avibactam. The dose finding of such combinations is complicated using the traditional pharmacokinetic/pharmacodynamic (PK/PD) index approach, especially if the β-lactamase inhibitor has an antibiotic effect of its own. Objectives To develop a novel mechanism-based pharmacokinetic–pharmacodynamic (PKPD) model for ceftazidime/avibactam against Gram-negative pathogens, with the potential for combination dosage simulation. Methods Four β-lactamase-producing Enterobacteriaceae, covering Ambler classes A, B and D, were exposed to ceftazidime and avibactam, alone and in combination, in static time–kill experiments. A PKPD model was developed and evaluated using internal and external evaluation, and combined with a population PK model and applied in dosage simulations. Results The developed PKPD model included the effects of ceftazidime alone, avibactam alone and an ‘enhancer’ effect of avibactam on ceftazidime in addition to the β-lactamase inhibitory effect of avibactam. The model could describe an extensive external Pseudomonas aeruginosa data set with minor modifications to the enhancer effect, and the utility of the model for clinical dosage simulation was demonstrated by investigating the influence of the addition of avibactam. Conclusions A novel mechanism-based PKPD model for the DBO/β-lactam combination ceftazidime/avibactam was developed that enables future comparison of the effect of avibactam with other DBO/β-lactam inhibitors in simulations, and may be an aid in translating PKPD results from in vitro to animals and humans.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Craig M. Reeves ◽  
Jesus Magallon ◽  
Kenneth Rocha ◽  
Tung Tran ◽  
Kimberly Phan ◽  
...  

Clinical resistance to amikacin and other aminoglycosides is usually due to the enzymatic acetylation of the antimicrobial molecule. A ubiquitous resistance enzyme among Gram-negatives is the aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib], which catalyzes acetylation using acetyl-CoA as a donor substrate. Therapies that combine the antibiotic and an inhibitor of the inactivation reaction could be an alternative to treat infections caused by resistant bacteria. We previously observed that metal ions such as Zn2+ or Cu2+ in complex with ionophores interfere with the AAC(6′)-Ib-mediated inactivation of aminoglycosides and reduced resistance to susceptibility levels. Ag1+ recently attracted attention as a potentiator of aminoglycosides′ action by mechanisms still in discussion. We found that silver acetate is also a robust inhibitor of the enzymatic acetylation mediated by AAC(6′)-Ib in vitro. This action seems to be independent of other mechanisms, like increased production of reactive oxygen species and enhanced membrane permeability, proposed to explain the potentiation of the antibiotic effect by silver ions. The addition of this compound to aac(6′)-Ib harboring Acinetobacter baumannii and Escherichia coli cultures resulted in a dramatic reduction of the resistance levels. Time-kill assays showed that the combination of silver acetate and amikacin was bactericidal and exhibited low cytotoxicity to HEK293 cells.


2021 ◽  
Vol 71 (5) ◽  
pp. 209-214
Author(s):  
Agus Syahrurachman ◽  
Atna Permana

Introduction: There is no susceptibility data of E. coli and K. aeromobilis in Indonesia, even data regarding minimal inhibitory concentration (MIC)-based susceptibility of E. coli and K. aeromobilis towards single antibiotic or combination of fosfomycin (FOS) and sulbactam-cepoferazone (SUL-CPZ) is very scarce, even though the data is required by clinicians. Methods: A descriptive observational study was carried out at the Microbiology Clinical Laboratory of the Faculty of Medicine, Universitas Indonesia. Thirty strains each of clinical isolates of E. coli and K. aeromobilis were subjected to MIC determination against FOS and SUL-CPZ. For susceptibility criteria, we adopted the Eucast guideline. The synergism of the combined antibiotics was determined by checkerboard titration. One strain of E. coli and K. aeromobilis showing a synergistic and independent effect against the combined antibiotics was subjected to a time-kill assay. The post-antibiotic effect (PAE) was determined on a strain of E. coli showing synergism against the combined antibiotics. Results: The MIC level of all strains decreased when the bacteria were exposed to the combined antibiotics. Synergism was observed in 53.3% of E. coli and 56.8% of K. aeromobilis. No antagonism was observed. Higher bacterial death during the first four hours occurred with the isolate, showing synergism compared to the isolate showing an independent effect. The PAE of E. coli was longer when exposed to combined antibiotics. Conclusion: In vitro synergism of FOS and SUL-CPZ was observed in the majority of isolates and could be used as the basis for further research on empirical treatment


2020 ◽  
Vol 14 (7) ◽  
pp. e0008487
Author(s):  
Anna F. Fesser ◽  
Olivier Braissant ◽  
Francisco Olmo ◽  
John M. Kelly ◽  
Pascal Mäser ◽  
...  

2005 ◽  
Vol 51 (7) ◽  
pp. 541-547 ◽  
Author(s):  
L C Braga ◽  
A A.M Leite ◽  
K G.S Xavier ◽  
J A Takahashi ◽  
M P Bemquerer ◽  
...  

We evaluated the interaction between Punica granatum (pomegranate) methanolic extract (PGME) and antibiotics against 30 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). Susceptibility testing of the isolates to PGME and antibiotics was performed by the broth dilution method. Synergic activity was detected between PGME and the 5 antibiotics tested, chloramphenicol, gentamicin, ampicillin, tetracycline, and oxacillin, ranging from 38% to 73%. For some isolates, PGME did not interfere with the action of any of the antibiotics tested. The bactericidal activity of PGME (0.1 × MIC) in combination with ampicillin (0.5 × MIC) was assessed using chosen isolates by time-kill assays, and they confirmed the synergic activity. Using this combination, cell viability was reduced by 99.9% and 72.5% in MSSA and MRSA populations, respectively. PGME increased the post-antibiotic effect (PAE) of ampicillin from 3 to 7 h. In addition, PGME demonstrated the potential to either inhibit the efflux pump NorA or to enhance the influx of the drug. The detection of in vitro variant colonies of S. aureus resistant to PGME was low and they did not survive. In conclusion, PGME dramatically enhanced the activity of all antibiotics tested, and thus, offers an alternative for the extension of the useful lifetime of these antibiotics.Key words: Staphylococcus aureus, antibiotic-resistance, synergy, NorA, Punica granatum.


GYNECOLOGY ◽  
2020 ◽  
Vol 21 (6) ◽  
pp. 36-40
Author(s):  
Anna G. Burduli ◽  
Natalia A. Kitsilovskaya ◽  
Yuliya V. Sukhova ◽  
Irina A. Vedikhina ◽  
Tatiana Y. Ivanets ◽  
...  

The review presents data on metabolites in the follicular fluid (FF) from the perspective of reproductive medicine and their use in order to predict outcomes of assisted reproductive technology (ART) programs. It considers various components of this biological medium (hormones, lipids, melatonin, etc.) with an assessment of their predictive value in prognosis of the effectiveness of in vitro fertilization (IVF) programs. The data on experimental directions in this field and the prospects for their use in clinical practice are presented. The article emphasizes that the growing clinical need and the unsolved problem of increasing the effectiveness of ART programs determine the need for further studies of the FF composition. Materials and methods. The review includes data related to this topic from foreign and Russian articles found in PubMed which were published in recent years. Results. Given the established fact of a direct effect of FF composition on growth and maturation of oocytes, and further, on the fertilization process, various FF metabolites are actively investigated as non-invasive markers of quality of oocytes/embryos. The article provides data on the experimental directions in this field and the prospects for their use in clinical practice. However, clinical studies of a relation between various FF metabolites levels and outcomes of IVF programs are contradictory. Conclusion. Owing large economic cost for treatment of infertility with IVF, there is need for expansion and intensification of studies to identify and use reliable predictors in prognosis of ART programs outcomes.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


Sign in / Sign up

Export Citation Format

Share Document