scholarly journals Multidrug-Resistant Salmonella enterica Serovar Typhi Isolates with High-Level Resistance to Ciprofloxacin in Dhaka, Bangladesh

2006 ◽  
Vol 50 (10) ◽  
pp. 3516-3517 ◽  
Author(s):  
Dilruba Ahmed ◽  
Liton T. D'Costa ◽  
Khorshed Alam ◽  
G. Balakrish Nair ◽  
M. Anowar Hossain
2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Yu-Ping Hong ◽  
Ying-Tsong Chen ◽  
You-Wun Wang ◽  
Bo-Han Chen ◽  
Ru-Hsiou Teng ◽  
...  

ABSTRACT We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from cases of human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin, and the element could move into the phylogenetically distant species Vibrio cholerae via conjugation.


2009 ◽  
Vol 138 (3) ◽  
pp. 318-321 ◽  
Author(s):  
M. MORITA ◽  
K. HIROSE ◽  
N. TAKAI ◽  
J. TERAJIMA ◽  
H. WATANABE ◽  
...  

SUMMARYThe phage types and antimicrobial susceptibilities of 226 isolates of Salmonella enterica serovar Typhi from imported cases in Japan between 2001 and 2006 were investigated. Most (93·8%) had travelled to Asian countries, particularly South East Asia. Twenty-one phage types were identified with E1 (30·5%), UVS (15·9%) and B1 (9·3%) being the most common. The frequency of multidrug-resistant strains reached 37·0% in 2006 with phage types E1 and E9 predominating. Almost half (48·2%) of the isolates were resistant to nalidixic acid and two isolates displayed high-level fluoroquinolone resistance. Three mutations, two in gyrA and one in parC, were identified in both isolates.


2013 ◽  
Vol 7 (12) ◽  
pp. 929-940 ◽  
Author(s):  
Amna Afzal ◽  
Yasra Sarwar ◽  
Aamir Ali ◽  
Abbas Maqbool ◽  
Muhammad Salman ◽  
...  

Introduction: This study aimed to determine the drug susceptibility patterns and genetic elements related to drug resistance in isolates of Salmonella enterica serovar Typhi (S. Typhi) from the Faisalabad region of Pakistan. Methodology: The drug resistance status of 80 isolates were evaluated by determining antimicrobial susceptibility, MICs, drug resistance genes involved, and the presence of integrons. Nalidixic acid resistance and reduced susceptibility to ciprofloxacin were also investigated by mutation screening of the gyrA, gyrB, parC, and parE genes. Results: Forty-seven (58.7%) isolates were multidrug resistant (MDR). Among the different resistance (R) types, the most commonly observed (13/80) was AmChStrTeSxtSmzTmp, which is the most frequent type observed in India and Pakistan. The most common drug resistant genes were blaTEM-1, cat, strA-strB, tetB, sul1, sul2, and dfrA7. Among the detected genes, only dfrA7 was found to be associated in the form of a single gene cassette within the class 1 integrons. Conclusions: MIC determination of currently used drugs revealed fourth-generation gatifloxacin as an effective drug against multidrug-resistant S. Typhi, but its clinical use is controversial. The Ser83→Phe substitution in gyrA was the predominant alteration in nalidixic acid-resistant isolates, exhibiting reduced susceptibility and increased MICs against ciprofloxacin. No mutations in gyrB, parC, or parE were detected in any isolate.


2012 ◽  
Vol 78 (9) ◽  
pp. 3087-3097 ◽  
Author(s):  
Orla Condell ◽  
Carol Iversen ◽  
Shane Cooney ◽  
Karen A. Power ◽  
Ciara Walsh ◽  
...  

ABSTRACTBiocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR)Salmonella entericastrains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds ofin vitroselection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure ofSalmonellastrains to an active biocidal compound, a high-level of tolerance was selected for a number ofSalmonellaserotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonicSalmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.


2003 ◽  
Vol 47 (6) ◽  
pp. 2006-2008 ◽  
Author(s):  
Hyunjoo Pai ◽  
Jeong-hum Byeon ◽  
Sunmi Yu ◽  
Bok Kwon Lee ◽  
Shukho Kim

ABSTRACT Six strains of Salmonella enterica serovar Typhi which were resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, streptomycin, tetracycline, and gentamicin were isolated in Korea. This multidrug resistance was transferred by a conjugative plasmid of about 50 kb. The plasmid harbored a class 1 integron, which included six resistance genes, aacA4b, catB8, aadA1, dfrA1, aac(6′)-IIa, and the novel blaP2, in that order. All of the isolates showed the same-size plasmids and the same ribotyping patterns, which suggests a clonal spread of these multidrug-resistant isolates.


1999 ◽  
Vol 43 (12) ◽  
pp. 3022-3024 ◽  
Author(s):  
Jordi Vila ◽  
Martha Vargas ◽  
Climent Casals ◽  
Honorato Urassa ◽  
Hassan Mshinda ◽  
...  

ABSTRACT Diarrhea caused by multidrug-resistant bacteria is an important public health problem among children in developing countries. The prevalence and antimicrobial susceptibility of diarrheagenicEscherichia coli in 346 children under 5 years of age in Ifakara, Tanzania, were studied. Thirty-eight percent of the cases of diarrhea were due to multiresistant enterotoxigenic E. coli, enteroaggregative E. coli, or enteropathogenicE. coli. Strains of all three E. colicategories showed high-level resistance to ampicillin, tetracycline, co-trimoxazole, and chloramphenicol but were highly susceptible to quinolones. Guidelines for appropriate use of antibiotics in developing countries need updating.


2004 ◽  
Vol 48 (11) ◽  
pp. 4130-4135 ◽  
Author(s):  
Kyungwon Lee ◽  
Dongeun Yong ◽  
Jong Hwa Yum ◽  
Young Sik Lim ◽  
Hyun Sook Kim ◽  
...  

ABSTRACT A chloramphenicol-resistant strain of Salmonella enterica serovar Typhi was first noted in Korea in 1992, when a resistant isolate was detected in a returned traveler. Continued isolation of multidrug-resistant (MDR) strains thereafter in other settings prompted a retrospective analysis of laboratory records and phenotypic and genotypic analyses of 12 chloramphenicol-resistant isolates. Among these, one isolate was resistant only to chloramphenicol, and the other isolates were also resistant to ampicillin and co-trimoxazole. MDR was transferred by conjugation from 9 of the 11 isolates. PCR showed that all isolates had an incompatible group HI1 plasmid, and oriT was detected in 10 isolates, which included strains with an unsuccessful transfer of resistance. All of the ampicillin-resistant isolates had a β-lactamase band of pI 5.4 and bla TEM alleles. A PCR amplicon from an isolate showed that the sequences were identical to those of bla TEM-1, suggesting that all isolates had a TEM-1 β-lactamase. All isolates had class 1 integrons: 10 isolates had integrons of ca. 1.2 kb with dhfr7 gene cassettes, and 1 isolate had an integron of ca. 2.3 kb with aacA4 and bla OXA-1-like gene cassettes. The pulsed-field gel electrophoresis patterns of 7 of 11 MDR isolates were identical and indistinguishable from those reported for isolates in India and Indonesia. In conclusion, some of the MDR strains in Korea are related to those in other Asian countries. Susceptibility testing became necessary for selection of antimicrobial agents for the optimal treatment of patients with the emergence of MDR Salmonella serovar Typhi in Korea.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S865-S865 ◽  
Author(s):  
Jeannette Bouchard ◽  
Caroline Derrick ◽  
Joseph Horvath

Abstract Background It is difficult to treat multidrug-resistant (MDR) human immunodeficiency virus (HIV). Trogarzo® (ibalizumab) a novel monoclonal antibody was approved in 2018 for heavily treatment-experienced HIV patients. Data support IBA use with at least one fully active agent, an OBR. Real-world IBA data are lacking. We report a successful case of reaching and maintaining suppression with IBA in a patient without an OBR. Methods Mutations were reviewed for the patient, Table 1, and evaluated for treatment. The patient is a 52- year old male, diagnosed in 1994, with MDR HIV secondary to non-adherence. Upon re-presenting to care, the patient was non-compliant with ART. Genotypic interpretation via the Stanford/ANRS algorithm was performed and interpreted, resulting in the addition of IBA intravenous administration every other week. IBA was obtained through patient assistance and costs were covered by the institution for infusion. Results Evaluation of the resistance profile indicated varying resistance to all available ART. More specifically, high-level resistance to all FDA-approved INSTIs, PIs, and low to high-level resistance to all NNRTIs and NRTIs. Table 2 outlines the ART history and viral load (VL) trends. The patient was initiated on daruanvir/ritonavir twice daily, etravirine twice daily, emtricitabine/tenofovir alafenamide and did not reach suppression. IBA was added off-label to a failing regimen. The patient reached VS (VL < 200 copies/mL) at Week 4 and has had an undetectable VL for 8 weeks. Notably his CD4 count has risen to 46, first detectable number since re-presenting to care. Conclusion We describe a heavily treatment experienced patient with an MDR HIV virus who achieved an undetectable VL without an OBT and the addition of intravenous IBA. Fostemsavir, was utilized in IBA’s phase III trial for similar patients, however, it is not currently FDA-approved nor available. Further data are needed to ensure continued susceptibility to IBA without an OBT. This patient required high-level coordination to reach each visit and receive this therapy alongside his oral agents. We conclude, IBA has allowed this patient to reach and maintain VS. Disclosures All authors: No reported disclosures.


Biologia ◽  
2013 ◽  
Vol 68 (2) ◽  
Author(s):  
Jasmine Kaur ◽  
Swatantra Jain

AbstractTyphoid fever is systemic illness caused by Salmonella enterica serovar Typhi (S. Typhi) in humans. Increasing multidrug resistant strains of S. Typhi and limited effect of available vaccines has necessitated exploring of new immunogens for protection against it. Earlier studies have shown that a crude preparation of outer membrane proteins (OMPs) of S. Typhi evokes strong immune response and induces a protective immunity against infection caused by diverse Gram-negative bacteria. In the present study we have evaluated the protective effect of a purified recombinant 49 kDa (r49kDa) OMP of S. Typhi alone or along with alum or complete Freund’s adjuvant, against a challenge by S. Typhi (0.4 × 50% lethal dose) by biochemical estimation of serum enzymes and oxidative stress enzymes in Swiss albino mice. There was a decrease in activity of alanine aminotransferase by 14.28%, 38.09%, 23.80%; aspartate aminotransferase by 6.25%, 25%, 16.25%; lipid peroxidation by 4.34%, 18.84%, 11.59%; and catalase by 8%, 14%, 10%, respectively, whereas increase in activity of reduced glutathione by 33.33%, 61.11%, 44.44%; glutathione peroxidase by 7%, 16%, 10%; and glutathione reductase by 8%, 20%, 12%, respectively, as compared to control animals challenged with bacteria without pre-immunization. The results indicated that immunization of mice with r49kDa OMP alone or in combination with adjuvants protected and normalized the liver. It reduces the development of oxidative stress in mice against Salmonella infection and the risk of getting typhoid. These results represent an additional supplement to our earlier reported data on protective immunity evoked by this protein.


Sign in / Sign up

Export Citation Format

Share Document