scholarly journals Gallium Nitrate Is Efficacious in Murine Models of Tuberculosis and Inhibits Key Bacterial Fe-Dependent Enzymes

2013 ◽  
Vol 57 (12) ◽  
pp. 6074-6080 ◽  
Author(s):  
Oyebode Olakanmi ◽  
Banurekha Kesavalu ◽  
Rajamouli Pasula ◽  
Maher Y. Abdalla ◽  
Larry S. Schlesinger ◽  
...  

ABSTRACTAcquiring iron (Fe) is critical to the metabolism and growth ofMycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga3+from Fe3+. Unlike Fe3+, Ga3+cannot be physiologically reduced to Ga2+. Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth ofM. tuberculosisin broth and within cultured human macrophages. We now report that Ga(NO3)3shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally withM. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3died. All Ga(NO3)3-treated mice survived.M. tuberculosisCFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga onM. tuberculosisribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreasedM. tuberculosisRR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3shows efficacy in murineM. tuberculosisinfection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Thanh Nguyen ◽  
Truc Kim ◽  
Hai Minh Ta ◽  
Won Sik Yeo ◽  
Jongkeun Choi ◽  
...  

ABSTRACTMannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme inStaphylococcus aureusmannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH fromS. aureusUSA300, a strain of community-associated methicillin-resistantS. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target.In vitrocell viability assessment of ΔmtlDknockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor ofS. aureusM1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions ofSaM1PDH at the atomic level, the crystal structure ofSaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to theSaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we proposeSaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors ofSaM1PDH based on structure-function studies.IMPORTANCEDue to the shortage of effective antibiotics against drug-resistantStaphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase ofS. aureusUSA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of usingSaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with aSaM1PDH inhibitor or knockout of the gene encodingSaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism ofSaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses ofSaM1PDH. Our results strongly support the concept that targeting ofSaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Adrian Richter ◽  
Tirosh Shapira ◽  
Yossef Av-Gay

ABSTRACT !!NCR1!! presents a great challenge to antimycobacterial therapy due to its innate resistance against most antibiotics. M. abscessus is able to grow intracellularly in human macrophages, suggesting that intracellular models can facilitate drug discovery. Thus, we have developed two host cell models: human macrophages for use in a new high-content screening method for M. abscessus growth and a Dictyostelium discoideum infection model with the potential to simplify downstream genetic analysis of host cell factors. A screen of 568 antibiotics for activity against intracellular M. abscessus led to the identification of two hit compounds with distinct growth inhibition. A collection of 317 human kinase inhibitors was analyzed, with the results yielding three compounds with an inhibitory effect on mycobacterial growth, strengthening the notion that host-directed therapy can be applied for M. abscessus.


2015 ◽  
Vol 59 (5) ◽  
pp. 2567-2571 ◽  
Author(s):  
Trudy H. Grossman ◽  
Timothy M. Murphy ◽  
Andrew M. Slee ◽  
Denene Lofland ◽  
Joyce A. Sutcliffe

ABSTRACTEravacycline is a novel broad-spectrum fluorocycline antibiotic being developed for a wide range of serious infections. Eravacycline was efficacious in mouse septicemia models, demonstrating 50% protective dose (PD50) values of ≤1 mg/kg of body weight once a day (q.d.) againstStaphylococcus aureus, including tetracycline-resistant isolates of methicillin-resistantS. aureus(MRSA), andStreptococcus pyogenes. The PD50values againstEscherichia coliisolates were 1.2 to 4.4 mg/kg q.d. In neutropenic mouse thigh infection models with methicillin-sensitiveS. aureus(MSSA) andS. pyogenes, eravacycline produced 2 log10reductions in CFU at single intravenous (i.v.) doses ranging from 0.2 to 9.5 mg/kg. In a neutropenic mouse lung infection model, eravacycline administered i.v. at 10 mg/kg twice a day (b.i.d.) reduced the level of tetracycline-resistant MRSA in the lung equivalent to that of linezolid given orally (p.o.) at 30 mg/kg b.i.d. At i.v. doses of 3 to 12 mg/kg b.i.d., eravacycline was more efficacious against tetracycline-resistantStreptococcus pneumoniaein a neutropenic lung infection model than linezolid p.o. at 30 mg/kg b.i.d. Eravacycline showed good efficacy at 2 to 10 mg/kg i.v. b.i.d., producing up to a 4.6 log10CFU reduction in kidney bacterial burden in a model challenged with a uropathogenicE. coliisolate. Eravacycline was active in multiple murine models of infection against clinically important Gram-positive and Gram-negative pathogens.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Charlotte A. Softley ◽  
Krzysztof M. Zak ◽  
Mark J. Bostock ◽  
Roberto Fino ◽  
Richard Xu Zhou ◽  
...  

ABSTRACT Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2014 ◽  
Vol 83 (3) ◽  
pp. 876-887 ◽  
Author(s):  
Kristina Schauer ◽  
Angelika Lehner ◽  
Richard Dietrich ◽  
Ina Kleinsteuber ◽  
Rocío Canals ◽  
...  

Cronobacter turicensisis an opportunistic foodborne pathogen that can cause a rare but sometimes lethal infection in neonates. Little is known about the virulence mechanisms and intracellular lifestyle of this pathogen. In this study, we developed an IgG monoclonal antibody (MAb; MAb 2G4) that specifically recognizes the O1 antigen ofC. turicensiscells. The antilipopolysaccharide antibody bound predominantly monovalently to the O antigen and reduced bacterial growth without causing cell agglutination. Furthermore, binding of the antibody to the O1 antigen ofC. turicensiscells caused a significant reduction of the membrane potential which is required to energize flagellar rotation, accompanied by a decreased flagellum-based motility. These results indicate that binding of IgG to the O antigen ofC. turicensiscauses a direct antimicrobial effect. In addition, this feature of the antibody enabled new insight into the pathogenicity ofC. turicensis. In a tissue culture infection model, pretreatment ofC. turicensiswith MAb 2G4 showed no difference in adhesion to human epithelial cells, whereas invasion of bacteria into Caco-2 cells was significantly inhibited.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James M. Kidd ◽  
Kamilia Abdelraouf ◽  
Tomefa E. Asempa ◽  
Romney M. Humphries ◽  
David P. Nicolau

ABSTRACT The Clinical and Laboratory Standards Institute (CLSI) daptomycin MIC susceptibility breakpoint for the treatment of enterococcal infections is ≤4 μg/ml. However, patients receiving daptomycin for the treatment of infections caused by enterococci with MICs of ≤4 μg/ml may experience treatment failures. We assessed the pharmacodynamics of daptomycin against enterococci in a neutropenic murine thigh infection model and determined the exposures necessary for bacteriostasis and a 1-log10-CFU reduction of Enterococcus faecalis and Enterococcus faecium. We further characterized daptomycin efficacy at clinically achievable exposures. Six E. faecium and 6 E. faecalis isolates (daptomycin MICs, 0.5 to 32 μg/ml) were studied. Daptomycin was administered at various doses over 24 h to achieve area under the free drug concentration-time curve-to-MIC ratios (fAUC0–24/MIC) ranging from 1 to 148. Daptomycin regimens that simulate mean human exposures following doses of 6, 8, and 10 mg/kg of body weight/day were also studied. Efficacy was assessed by the differences in the number of log10 CFU per thigh at 24 h. The Hill equation was used to estimate the fAUC0–24/MIC required to achieve bacteriostasis and a 1-log10-CFU reduction. For E. faecium, a 1-log10-CFU reduction required an fAUC0–24/MIC of 12.9 (R2 = 0.71). For E. faecalis, a 1-log10-CFU reduction was not achieved, while the fAUC0–24/MIC required for stasis was 7.2 (R2 = 0.8). With a human-simulated regimen of 6 mg/kg/day, a 1-log10-CFU reduction was observed in 3/3 E. faecium isolates with MICs of <4 μg/ml and 0/3 E. faecium isolates with MICs of ≥4 μg/ml; however, a 1-log10-CFU reduction was not achieved for any of the 6 E. faecalis isolates. These results, alongside clinical data, prompt a reevaluation of the current breakpoint.


2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Remi L. Gratacap ◽  
Allison K. Scherer ◽  
Brittany G. Seman ◽  
Robert T. Wheeler

ABSTRACT Candida albicans is a ubiquitous mucosal commensal that is normally prevented from causing acute or chronic invasive disease. Neutrophils contribute to protection in oral infection but exacerbate vulvovaginal candidiasis. To dissect the role of neutrophils during mucosal candidiasis, we took advantage of a new, transparent zebrafish swim bladder infection model. Intravital microscopic tracking of individual animals revealed that the blocking of neutrophil recruitment leads to rapid mortality in this model through faster disease progression. Conversely, artificial recruitment of neutrophils during early infection reduces disease pressure. Noninvasive longitudinal tracking showed that mortality is a consequence of C. albicans breaching the epithelial barrier and invading surrounding tissues. Accordingly, we found that a hyperfilamentous C. albicans strain breaches the epithelial barrier more frequently and causes mortality in immunocompetent zebrafish. A lack of neutrophils at the infection site is associated with less fungus-associated extracellular DNA and less damage to fungal filaments, suggesting that neutrophil extracellular traps help to protect the epithelial barrier from C. albicans breach. We propose a homeostatic model where C. albicans disease pressure is balanced by neutrophil-mediated damage of fungi, maintaining this organism as a commensal while minimizing the risk of damage to host tissue. The unequaled ability to dissect infection dynamics at a high spatiotemporal resolution makes this zebrafish model a unique tool for understanding mucosal host-pathogen interactions.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2013 ◽  
Vol 57 (7) ◽  
pp. 3240-3249 ◽  
Author(s):  
Christopher R. E. McEvoy ◽  
Brian Tsuji ◽  
Wei Gao ◽  
Torsten Seemann ◽  
Jessica L. Porter ◽  
...  

ABSTRACTVancomycin-intermediateStaphylococcus aureus(VISA) strains often arise by mutations in the essential two-component regulatorwalKR; however their impact onwalKRfunction has not been definitively established. Here, we investigated 10 MRSA strains recovered serially after exposure of vancomycin-susceptibleS. aureus(VSSA) JKD6009 to simulated human vancomycin dosing regimens (500 mg to 4,000 mg every 12 h) using a 10-day hollow fiber infection model. After continued exposure to the vancomycin regimens, two isolates displayed reduced susceptibility to both vancomycin and daptomycin, developing independent IS256insertions in thewalKR5′ untranslated region (5′ UTR). Quantitative reverse transcription-PCR (RT-PCR) revealed a 50% reduction inwalKRgene expression in the IS256mutants compared to the VSSA parent. Green fluorescent protein (GFP) reporter analysis, promoter mapping, and site-directed mutagenesis confirmed these findings and showed that the IS256insertions had replaced two SigA-likewalKRpromoters with weaker, hybrid promoters. Removal of IS256reverted the phenotype to VSSA, showing that reduced expression of WalKR did induce the VISA phenotype. Analysis of selected WalKR-regulated autolysins revealed upregulation ofssaAbut no change in expression ofsakandsceDin both IS256mutants. Whole-genome sequencing of the two mutants revealed an additional IS256insertion withinagrCfor one mutant, and we confirmed that this mutation abolishedagrfunction. These data provide the first substantial analysis ofwalKRpromoter function and show that prolonged vancomycin exposure can result in VISA through an IS256-mediated reduction inwalKRexpression; however, the mechanisms by which this occurs remain to be determined.


Sign in / Sign up

Export Citation Format

Share Document