scholarly journals Inhibiting Fungal Echinocandin Resistance by Small-Molecule Disruption of Geranylgeranyltransferase Type I Activity

2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Qiangqiang Sun ◽  
Kang Xiong ◽  
Yuncong Yuan ◽  
Jing Yu ◽  
Lianjuan Yang ◽  
...  

ABSTRACT Echinocandin resistance in Candida is a great concern, as the echinocandin drugs are recommended as first-line therapy for patients with invasive candidiasis. However, therapeutic efforts to thwart echinocandin resistance have been hampered by a lack of fungal specific drug targets. Here, we show that deleting CDC43, the β subunit of geranylgeranyltransferase type I (GGTase I), confers hypersensitivity to echinocandins, which renders GGTase I a tractable target in combatting echinocandin resistance. The membrane localization of Rho1, which is critical for (1,3)-β-d-glucan synthase Fks1 activation, is disrupted in the cdc43 mutant, resulting in decreased amounts of glucans in the cell wall, thereby exacerbating the cell wall stress upon caspofungin addition. Guided by this insight, we found that selective chemical inhibition of GGTase I by L-269289 potentiates echinocandin activity and renders echinocandin-resistant Candida albicans responsive to treatment in vitro and in animal models for disseminated infection. Furthermore, L-269289 and echinocandins also act in a synergistic manner for the treatment of Candida tropicalis and Candida parapsilosis. Importantly, deletion of CDC43 is lethal in Candida glabrata. L-269289 is active on its own to kill C. glabrata, and its fungicidal activity is enhanced when combined with caspofungin. Thus, targeting GGTase I has therapeutic potential to address the clinical challenge of echinocandin-resistant candidiasis.

2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Matthew B. McNeil ◽  
Theresa O’Malley ◽  
Devon Dennison ◽  
Catherine D. Shelton ◽  
Bjorn Sunde ◽  
...  

ABSTRACT The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. IMPORTANCE Mycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.


2011 ◽  
Vol 56 (1) ◽  
pp. 208-217 ◽  
Author(s):  
Keunsook K. Lee ◽  
Donna M. MacCallum ◽  
Mette D. Jacobsen ◽  
Louise A. Walker ◽  
Frank C. Odds ◽  
...  

ABSTRACTCandida albicanscells with increased cell wall chitin have reduced echinocandin susceptibilityin vitro. The aim of this study was to investigate whetherC. albicanscells with elevated chitin levels have reduced echinocandin susceptibilityin vivo. BALB/c mice were infected withC. albicanscells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreasedC. albicansdensity in kidney lesions. In contrast, mice infected with high-chitinC. albicanscells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when testedin vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content ofC. albicanscells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation inFKS1resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin againstC. albicanswas reducedin vivodue to either elevation of chitin levels in the cell wall or acquisition ofFKS1point mutations.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Yuk-Yam Cheung ◽  
Mamie Hui

ABSTRACT We evaluated the in vitro and in vivo effects of nikkomycin Z combined with an echinocandin (anidulafungin or micafungin) against two Candida albicans isolates and their lab-derived echinocandin-resistant fks mutants with FKS1 S645Y and FKS1 S645P. Synergistic effects were observed in all tested strains (fractional inhibitory concentration index, <0.5). Enhanced survival was observed in an immunocompromised murine model (log-rank test, P < 0.02). Our study demonstrated the therapeutic potential of nikkomycin Z-echinocandin combinations in managing echinocandin resistance.


2014 ◽  
Vol 58 (10) ◽  
pp. 5841-5847 ◽  
Author(s):  
Qiaobin Xiao ◽  
Sergei Vakulenko ◽  
Mayland Chang ◽  
Shahriar Mobashery

ABSTRACTStaphylococcus aureusis a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which hasin vitroandin vivoactivities against methicillin-resistantS. aureus(MRSA). We report herein that MmpL, a putative member of the resistance, nodulation, and cell division (RND) family of proteins, contributes to oxadiazole resistance in theS. aureusstrain COL. Through serial passages, we generated twoS. aureusCOL variants that showed diminished susceptibilities to an oxadiazole antibiotic. The MICs for the oxadiazole against one strain (designatedS. aureusCOLI) increased reproducibly 2-fold (to 4 μg/ml), while against the other strain (S. aureusCOLR), they increased >4-fold (to >8 μg/ml, the limit of solubility). The COLRstrain was derived from the COLIstrain. Whole-genome sequencing revealed 31 mutations inS. aureusCOLR, of which 29 were shared with COLI. Consistent with our previous finding that oxadiazole antibiotics inhibit cell wall biosynthesis, we found 13 mutations that occurred either in structural genes or in promoters of the genes of the cell wall stress stimulon. Two unique mutations inS. aureusCOLRwere substitutions in two genes that encode the putative thioredoxin (SACOL1794) and MmpL (SACOL2566). A role formmpLin resistance to oxadiazoles was discerned from gene deletion and complementation experiments. To our knowledge, this is the first report that a cell wall-acting antibiotic selects for mutations in the cell wall stress stimulon and the first to implicate MmpL in resistance to antibiotics inS. aureus.


2012 ◽  
Vol 56 (4) ◽  
pp. 1810-1820 ◽  
Author(s):  
Jennifer Campbell ◽  
Atul K. Singh ◽  
Jonathan G. Swoboda ◽  
Michael S. Gilmore ◽  
Brian J. Wilkinson ◽  
...  

ABSTRACTWall teichoic acids (WTAs) are phosphate-rich, sugar-based polymers attached to the cell walls of most Gram-positive bacteria. InStaphylococcus aureus, these anionic polymers regulate cell division, protect cells from osmotic stress, mediate host colonization, and mask enzymatically susceptible peptidoglycan bonds. Although WTAs are not required for survivalin vitro, blocking the pathway at a late stage of synthesis is lethal. We recently discovered a novel antibiotic, targocil, that inhibits a late acting step in the WTA pathway. Its target is TarG, the transmembrane component of the ABC transporter (TarGH) that exports WTAs to the cell surface. We examined here the effects of targocil onS. aureususing transmission electron microscopy and gene expression profiling. We report that targocil treatment leads to multicellular clusters containing swollen cells displaying evidence of osmotic stress, strongly induces the cell wall stress stimulon, and reduces the expression of key virulence genes, includingdltABCDand capsule genes. We conclude that WTA inhibitors that act at a late stage of the biosynthetic pathway may be useful as antibiotics, and we present evidence that they could be particularly useful in combination with beta-lactams.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (17) ◽  
Author(s):  
Elena Pérez-Nadales ◽  
Antonio Di Pietro

Blood ◽  
2020 ◽  
Vol 135 (26) ◽  
pp. 2420-2424 ◽  
Author(s):  
Ramsha Khan ◽  
Melissa Menard ◽  
Chao-Ching Jen ◽  
Xi Chen ◽  
Peter A. A. Norris ◽  
...  

Abstract Polyclonal anti-D is a first-line therapy for immune thrombocytopenia (ITP). Monoclonal antibodies are desirable alternatives, but none have yet proven successful despite their ability to opsonize erythrocytes (or red blood cells, RBCs) and cause anemia. Here, we examined 12 murine erythrocyte–specific antibodies of different specificity and subtypes and found that 8 of these antibodies could induce anemia in antigen-positive mice. Of these 8 antibodies, only 5 ameliorated ITP. All antibodies were examined for their in vitro ability to support macrophage-mediated phagocytosis of erythrocytes. Antibodies which supported erythrocyte phagocytosis in vitro successfully ameliorated ITP in vivo. To examine the ability of each antibody to inhibit phagocytosis of platelets, the antibodies were used to sensitize erythrocytes in vitro and these were added to a platelet phagocytosis assay. Antibodies that inhibited platelet phagocytosis in vitro also all ameliorated ITP in vivo. We conclude that inducing anemia is not a sufficient condition for amelioration of ITP but that the antibody’s ability to prevent platelet phagocytosis in vitro predicted its ability to ameliorate ITP. We suggest that inhibition of in vitro platelet phagocytosis may prove to be a valuable tool for determining which erythrocyte antibodies would likely be candidates for clinical use in ITP.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Hee Ra Jung ◽  
Seongman Jo ◽  
Min Jae Jeon ◽  
Hyelim Lee ◽  
Yeonjeong Chu ◽  
...  

In cancer immunotherapy, the cyclic GMP–AMP synthase–stimulator of interferon genes (STING) pathway is an attractive target for switching the tumor immunophenotype from ‘cold’ to ‘hot’ through the activation of the type I interferon response. To develop a new chemical entity for STING activator to improve cyclic GMP-AMP (cGAMP)-induced innate immune response, we identified KAS-08 via the structural modification of DW2282, which was previously reported as an anti-cancer agent with an unknown mechanism. Further investigation revealed that direct STING binding or the enhanced phosphorylation of STING and downstream effectors were responsible for DW2282-or KAS-08-mediated STING activity. Furthermore, KAS-08 was validated as an effective STING pathway activator in vitro and in vivo. The synergistic effect of cGAMP-mediated immunity and efficient anti-cancer effects successfully demonstrated the therapeutic potential of KAS-08 for combination therapy in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document