scholarly journals Antimicrobial Resistance in Salmonella in the United States from 1948 to 1995

2016 ◽  
Vol 60 (4) ◽  
pp. 2567-2571 ◽  
Author(s):  
Daniel A. Tadesse ◽  
Aparna Singh ◽  
Shaohua Zhao ◽  
Mary Bartholomew ◽  
Niketta Womack ◽  
...  

ABSTRACTWe conducted a retrospective study of 2,149 clinicalSalmonellastrains to help document the historical emergence of antimicrobial resistance. There were significant increases in resistance to older drugs, including ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline, which were most common inSalmonella entericaserotype Typhimurium. An increase in multidrug resistance was observed for each decade since the 1950s. These data help show howSalmonellaevolved over the past 6 decades, after the introduction of new antimicrobial agents.

2011 ◽  
Vol 55 (9) ◽  
pp. 3985-3989 ◽  
Author(s):  
Maria Sjölund-Karlsson ◽  
Kevin Joyce ◽  
Karen Blickenstaff ◽  
Takiyah Ball ◽  
Jovita Haro ◽  
...  

ABSTRACTDue to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasiveSalmonellainfections. In the present study, 696 isolates of non-TyphiSalmonellacollected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-twoSalmonella entericaserotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-TyphiSalmonellaisolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. AmongSalmonellaserotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-typeSalmonellaof ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin andSalmonella enterica.


1999 ◽  
Vol 90 (6) ◽  
pp. 993-997 ◽  
Author(s):  
Daniel L. Friedlich ◽  
Paul J. Feustel ◽  
A. John Popp

Object. The workforce demand for neurosurgeons was quantified by a review and an analysis of journal recruitment advertisements published over the past 13 years.Methods. A retrospective analysis of recruitment advertisements from July 1985 through June 1998 was performed by examining issues of the Journal of Neurosurgery and Neurosurgery. Advertisement information that appeared in each journal during the last 3 years was collected from alternating months (July to May); information that appeared prior to that time was collected from alternating recruitment years back to 1985. The authors examined the following workforce parameters: practice venue, subspecialization, and practice size.They found no significant decrease in neurosurgical recruitment advertisements. There was an average of 102.7 ± 22.4 (standard deviation) advertised positions per year during the most recent 3 years compared with 92.6 ± 17.9 advertised positions per year during the preceding decade. Similarly, there has been no decline in advertised positions either in academic (33 ± 6.1/year for the most recent 3 years compared with 32.8 ± 5.9/year for 1985–1995) or private practice (69.7 ± 21.6/year for the most recent 3 years compared with 59.8 ± 13.4/year for 1985–1995). A shift in demand toward subspecialty neurosurgery was observed. During the past 3 years, 31.2 ± 5.9% of advertised positions called for subspecialty expertise, compared with 18.5 ± 2.8% for the preceding decade (p < 0.05). The largest number of subspecialty advertisements designated positions for spine and pediatric neurosurgeons. Private practice advertisements increasingly sought to add neurosurgeons to group practices.Conclusions. Contrary to previous reports and a prevailing myth, our data show no decrease in workforce demand for neurosurgeons in the United States over the past 3 years compared with the prior decade. A shift toward subspecialist recruitment, particularly for spine neurosurgeons, has been demonstrated in both academic and private practice venues.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Heather Tate ◽  
Jason P. Folster ◽  
Chih-Hao Hsu ◽  
Jessica Chen ◽  
Maria Hoffmann ◽  
...  

ABSTRACT We sequenced the genomes of 10 Salmonella enterica serovar Infantis isolates containing bla CTX-M-65 obtained from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine National Antimicrobial Resistance Monitoring System (NARMS) surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes [aph(4)-Ia, aac(3)-IVa, aph(3′)-Ic, bla CTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1] located in two distinct sites of a megaplasmid (∼316 to 323 kb) similar to that described in a bla CTX-M-65-positive S. Infantis isolate from a patient in Italy. High-quality single nucleotide polymorphism (hqSNP) analysis revealed that all U.S. isolates were closely related, separated by only 1 to 38 pairwise high-quality SNPs, indicating a high likelihood that strains from humans, chickens, and cattle recently evolved from a common ancestor. The U.S. isolates were genetically similar to the bla CTX-M-65-positive S. Infantis isolate from Italy, with a separation of 34 to 47 SNPs. This is the first report of the bla CTX-M-65 gene and the pESI (plasmid for emerging S. Infantis)-like megaplasmid from S. Infantis in the United States, and it illustrates the importance of applying a global One Health human and animal perspective to combat antimicrobial resistance.


2001 ◽  
Vol 45 (4) ◽  
pp. 1037-1042 ◽  
Author(s):  
Daniel F. Sahm ◽  
James A. Karlowsky ◽  
Laurie J. Kelly ◽  
Ian A. Critchley ◽  
Mark E. Jones ◽  
...  

ABSTRACT Although changing patterns in antimicrobial resistance inStreptococcus pneumoniae have prompted several surveillance initiatives in recent years, the frequency with which these studies are needed has not been addressed. To approach this issue, the extent to which resistance patterns change over a 1-year period was examined. In this study we analyzed S. pneumoniaeantimicrobial susceptibility results produced in our laboratory with isolates obtained over 2 consecutive years (1997–1998 and 1998–1999) from the same 96 institutions distributed throughout the United States. Comparison of results revealed increases in resistant percentages for all antimicrobial agents studied except vancomycin. For four of the agents tested (penicillin, cefuroxime, trimethoprim-sulfamethoxazole, and levofloxacin), the increases were statistically significant (P < 0.05). Resistance to the fluoroquinolone remained low in both years (0.1 and 0.6%, respectively); in contrast, resistance to macrolides was consistently greater than 20%, and resistance to trimethoprim-sulfamethoxazole increased from 13.3 to 27.3%. Multidrug resistance, concurrent resistance to three or more antimicrobials of different chemical classes, also increased significantly between years, from 5.9 to 11%. The most prevalent phenotype was resistance to penicillin, azithromycin (representative macrolide), and trimethoprim-sulfamethoxazole. Multidrug-resistant phenotypes that included fluoroquinolone resistance were uncommon; however, two phenotypes that included fluoroquinolone resistance not found in 1997–1998 were encountered in 1998–1999. This longitudinal surveillance study of resistance inS. pneumoniae revealed that significant changes do occur in just a single year and supports the need for surveillance at least on an annual basis, if not continuously.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
David J. Finch ◽  
Norm O'Reilly ◽  
David Legg ◽  
Nadège Levallet ◽  
Emma Fody

PurposeAs an industry, sport business (SB) has seen significant growth since the early 2000s. Concurrently, the number of postsecondary sport management programs has also expanded dramatically. However, there remain concerns about whether these programs are meeting the demands of both employers and graduates. To address these concerns, this study examines the credential and competency demands of the SB labor market in the United States.Design/methodology/approachResearchers conducted an analysis using a broad sample of employment postings (N = 613) for SB positions from two different years, 2008 and 2018.FindingsResults support that a complex set of SB qualifications exist, and the credentials and competencies included in SB employment postings have evolved over the past decade.Originality/valueA noteworthy finding is that meta-skills are found to be particularly important for employability, including items such as communication, emotional intelligence and analytical thinking and adaptability.


2019 ◽  
Author(s):  
Chris Kenyon ◽  
Jolein Laumen ◽  
Dorien Van Den Bossche ◽  
Christophe Van Dijck

Abstract Background Does the emergence of antimicrobial resistance in Neisseria gonorrhoeae include the erasure of highly susceptible strains or does it merely involve a stretching of the MIC distribution? If it was the former this would be important to know as it would increase the probability that the loss of susceptibility is irreversible.Methods We conducted a historical analysis based on a literature review of changes of N. gonorrhoeae MIC distribution over the past 75 years for 3 antimicrobials (benzylpenicillin, ceftriaxone and azithromycin) in five countries (Denmark, Japan, South Africa, the United Kingdom and the United States).Results Changes in MIC distribution were most marked for benzylpenicillin and showed evidence of a right shifting of MIC distribution that was associated with a reduction/elimination of susceptible strains in all countries. In the case of ceftriaxone and azithromycin, where only more recent data was available, right shifting was also found in all countries but the extent of right shifting varied and the evidence for the elimination of susceptible strains was more mixed.Conclusions The finding of right shifting of MIC distribution combined with reduction/elimination of susceptible strains is concerning since it suggests that this shifting may not be reversible. Since excess antimicrobial consumption is likely to be responsible for this right shifting, this insight provides additional impetus to promote antimicrobial stewardship.


2002 ◽  
Vol 46 (8) ◽  
pp. 2651-2655 ◽  
Author(s):  
Mark E. Jones ◽  
James A. Karlowsky ◽  
Renée Blosser-Middleton ◽  
Ian A. Critchley ◽  
Elena Karginova ◽  
...  

ABSTRACT The prevalence of antimicrobial resistance among 4,940 U.S. pneumococcal isolates collected during 1999 was as follows: penicillin, 16.2%; amoxicillin-clavulanate, 12.2%; cefuroxime, 28.1%; ceftriaxone, 3.6%; trimethoprim-sulfamethoxazole, 30.3%; azithromycin, 21.4%; levofloxacin, 0.6%; and moxifloxacin, 0.1%. Compared to the previous 1997-1998 study (Jones et al., Antimicrob. Agents Chemother. 44:2645-2652, 2000), increases were noted for resistance to penicillin (3.7%; P < 0.001), amoxicillin-clavulanate (3.9%; P < 0.001), cefuroxime (5.7%; P < 0.001), azithromycin (2.4%; P = 0.014), trimethoprim-sulfamethoxazole (15.4%; P < 0.001), and levofloxacin (0.3%; P = 0.017). Resistance to ceftriaxone (0.1%; P = 0.809) and moxifloxacin (0.03%; P = 0.570) decreased. Concurrently, multidrug resistance increased (P < 0.001) from 6.3% to 11.3%.


2012 ◽  
Vol 78 (22) ◽  
pp. 8062-8066 ◽  
Author(s):  
Russell D. Hamilton ◽  
Holly J. Hulsebus ◽  
Samina Akbar ◽  
Jeffrey T. Gray

ABSTRACTSalmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasiveSalmonella entericainfection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). TheblaCMY-2gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasiveSalmonella entericainfections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized thatblaCMY-2-positiveSalmonella entericawould exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatmentin vitro. SevenSalmonella entericastrains survived a simulated patient treatmentin vitroand, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because theblaCMY-2genes are commonly located on large, multidrug-resistant plasmids, increased expression of theblaCMY-2gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, includingblaCMY-2andfloRinS. entericaserovar Typhimurium andS. entericaserovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both public health and antimicrobial resistance ofSalmonella enterica.


2013 ◽  
Vol 20 (10) ◽  
pp. 1491-1498 ◽  
Author(s):  
Estela Trebicka ◽  
Susan Jacob ◽  
Waheed Pirzai ◽  
Bryan P. Hurley ◽  
Bobby J. Cherayil

ABSTRACTRecent observations from Africa have rekindled interest in the role of serum bactericidal antibodies in protecting against systemic infection withSalmonella entericaserovar Typhimurium. To determine whether the findings are applicable to other populations, we analyzed serum samples collected from healthy individuals in the United States. We found that all but 1 of the 49 adult samples tested had robust bactericidal activity againstS. Typhimurium in a standardin vitroassay. The activity was dependent on complement and could be reproduced by immunoglobulin G (IgG) purified from the sera. The bactericidal activity was inhibited by competition with soluble lipopolysaccharide (LPS) fromS. Typhimurium but not fromEscherichia coli, consistent with recognition of a determinant in the O-antigen polysaccharide. Sera from healthy children aged 10 to 48 months also had bactericidal activity, although it was significantly less than in the adults, correlating with lower levels of LPS-specific IgM and IgG. The lone sample in our collection that lacked bactericidal activity was able to inhibit killing ofS. Typhimurium by the other sera. The inhibition correlated with the presence of an LPS-specific IgM and was associated with decreased complement deposition on the bacterial surface. Our results indicate that healthy individuals can have circulating antibodies to LPS that either mediate or inhibit killing ofS. Typhimurium. The findings contrast with the observations from Africa, which linked bactericidal activity to antibodies against anS. Typhimurium outer membrane protein and correlated the presence of inhibitory anti-LPS antibodies with human immunodeficiency virus infection.


2019 ◽  
Vol 57 (7) ◽  
Author(s):  
Tam T. Van ◽  
Emi Minejima ◽  
Chiao An Chiu ◽  
Susan M. Butler-Wu

ABSTRACT Fluoroquinolones remain some of the more commonly prescribed antimicrobial agents in the United States, despite the wide array of reported side effects that are associated with their use. In 2019, the Clinical and Laboratory Standards Institute revised the fluoroquinolone antimicrobial susceptibility testing breakpoints for both Enterobacteriaceae and Pseudomonas aeruginosa. This breakpoint revision was deemed necessary on the basis of pharmacokinetic and pharmacodynamic analyses suggesting that the previous breakpoints were too high, in addition to the inability of the previous breakpoints to detect low-level resistance to this antibiotic class. In this minireview, we review the published data in support of this revision, as well as the potential challenges that these breakpoint revisions are likely to pose for clinical laboratories.


Sign in / Sign up

Export Citation Format

Share Document