scholarly journals Decreased Azithromycin Susceptibility ofNeisseria gonorrhoeae Due to mtrRMutations

1999 ◽  
Vol 43 (10) ◽  
pp. 2468-2472 ◽  
Author(s):  
Leticia Zarantonelli ◽  
Graciela Borthagaray ◽  
Eun-Hee Lee ◽  
William M. Shafer

ABSTRACT Single-dose azithromycin therapy has recently been used in Uruguay for the treatment of uncomplicated gonococcal infections. As part of an active surveillance study to monitor the emergence of antibiotic resistance in gonococcal isolates, we examined the levels of azithromycin susceptibility in 51 consecutive isolates obtained from males with uncomplicated gonococcal urethritis. Isolates with decreased susceptibility to azithromycin (MICs, 0.25 to 0.5 μg/ml) were common, and these isolates often displayed cross-resistance to hydrophobic antimicrobial agents (erythromycin and Triton X-100). Resistance to erythromycin and Triton X-100 is frequently due to overexpression of the mtrCDE-encoded efflux pump mediated by mutations in themtrR gene, which encodes a transcriptional repressor that modulates expression of the mtrCDE operon. Accordingly, we questioned whether clinical isolates that express decreased azithromycin susceptibility harbor mtrR mutations. Promoter mutations that would decrease the level of expression ofmtrR as well as a missense mutation at codon 45 in themtrR-coding region that would result in a radical amino acid replacement within the DNA-binding motif of MtrR were found in these strains. When these mutations were transferred into azithromycin-susceptible strain FA19 by transformation, the susceptibility of gonococci to azithromycin was decreased by nearly 10-fold. The mtrCDE-encoded efflux pump system was responsible for this property since insertional inactivation of themtrC gene resulted in enhanced susceptibility of gonococci to azithromycin. We conclude that the mtrCDE-encoded efflux pump can recognize azithromycin and that the emergence of gonococcal strains with decreased susceptibility to azithromycin can, in part, be explained by mtrR mutations.

2021 ◽  
Vol 22 (4) ◽  
pp. 2050
Author(s):  
Lukas Hofmann ◽  
Melanie Hirsch ◽  
Sharon Ruthstein

Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.


2010 ◽  
Vol 54 (9) ◽  
pp. 3770-3775 ◽  
Author(s):  
Jürgen A. Bohnert ◽  
Brian Karamian ◽  
Hiroshi Nikaido

ABSTRACT AcrAB-TolC is the major constitutively expressed efflux pump system that provides resistance to a variety of antimicrobial agents and dyes in Escherichia coli. However, no systematically optimized real-time dye efflux assay has been published for the measurement of its activity and for detection of possible competition between substrates. Here, we report on the development of such an assay using a lipophilic dye, Nile Red. Energy-depleted cells were loaded with the dye in the presence of low (10 μM or less) concentrations of the proton conductor carbonyl cyanide m-chlorophenylhydrazone (CCCP). The CCCP was then removed, and efflux was triggered by energization with glucose. Various known efflux pump inhibitors and antimicrobials were checked for the ability to slow down Nile Red efflux, presumably through competition. Besides the known inhibitors Phe-Arg-β-naphthylamide and 1-naphthyl-methylpiperazine, several tetracyclic compounds (doxorubicin, minocycline, chlortetracycline, doxycycline, and tetracycline) and tetraphenylphosphonium chloride were found to interfere with dye efflux. This inhibition could not be explained by the depletion of proton motive force. None of the other tested antimicrobials, including macrolides, fluoroquinolones, and β-lactams, had any impact on Nile Red efflux, even at concentrations of up to 1 mM.


2007 ◽  
Vol 196 (12) ◽  
pp. 1804-1812 ◽  
Author(s):  
Douglas M. Warner ◽  
Jason P. Folster ◽  
William M. Shafer ◽  
Ann E. Jerse

2002 ◽  
Vol 46 (2) ◽  
pp. 561-565 ◽  
Author(s):  
Corinne Rouquette-Loughlin ◽  
Igor Stojiljkovic ◽  
Tara Hrobowski ◽  
Jacqueline T. Balthazar ◽  
William M. Shafer

ABSTRACT The MtrC-MtrD-MtrE efflux pump possessed by Neisseria gonorrhoeae is very similar to the MexA-MexB-OprM efflux pump of Pseudomonas aeruginosa. Because the antimicrobial resistance property afforded by the MexA-MexB-OprM efflux pump also requires the TonB protein, we asked whether a similar requirement exists for the gonococcal efflux pump. Unlike earlier studies with P. aeruginosa, we found that constitutive levels of gonococcal resistance to hydrophobic antimicrobial agents (i.e., Triton X-100 [TX-100]) did not require the TonB, ExbB, or ExbD protein. However, inducible levels of TX-100 resistance in gonococci had an absolute requirement for the TonB-ExbB-ExbD system, suggesting that such resistance in gonococci has an energy requirement above and beyond that required for constitutive pump activity.


2005 ◽  
Vol 187 (11) ◽  
pp. 3713-3720 ◽  
Author(s):  
Jason P. Folster ◽  
William M. Shafer

ABSTRACT The obligate human pathogen Neisseria gonorrhoeae uses the MtrC-MtrD-MtrE efflux pump to resist structurally diverse hydrophobic antimicrobial agents (HAs), some of which bathe mucosal surfaces that become infected during transmission of gonococci. Constitutive high-level HA resistance occurs by the loss of a repressor (MtrR) that negatively controls transcription of the mtrCDE operon. This high-level HA resistance also requires the product of the mtrF gene, which is located downstream and transcriptionally divergent from mtrCDE. MtrF is a putative inner membrane protein, but its role in HA resistance mediated by the MtrC-MtrD-MtrE efflux pump remains to be determined. High-level HA resistance can also be mediated through an induction process that requires enhanced transcription of mtrCDE when gonococci are grown in the presence of a sublethal concentration of Triton X-100. We now report that inactivation of mtrF results in a significant reduction in the induction of HA resistance and that the expression of mtrF is enhanced when gonococci are grown under inducing conditions. However, no effect was observed on the induction of mtrCDE expression in an MtrF-negative strain. The expression of mtrF was repressed by MtrR, the major repressor of mtrCDE expression. In addition to MtrR, another repressor (MpeR) can downregulate the expression of mtrF. Repression of mtrF by MtrR and MpeR was additive, demonstrating that the repressive effects mediated by these regulators are independent processes.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Ana Victoria Gutiérrez ◽  
Matthias Richard ◽  
Françoise Roquet-Banères ◽  
Albertus Viljoen ◽  
Laurent Kremer

ABSTRACT Mycobacterium abscessus is a human pathogen responsible for severe respiratory infections, particularly in patients with underlying lung disorders. Notorious for being highly resistant to most antimicrobials, new therapeutic approaches are needed to successfully treat M. abscessus-infected patients. Clofazimine (CFZ) and bedaquiline (BDQ) are two antibiotics used for the treatment of multidrug-resistant tuberculosis and are considered alternatives for the treatment of M. abscessus pulmonary disease. To get insights into their mechanisms of resistance in M. abscessus, we previously characterized the TetR transcriptional regulator MAB_2299c, which controls expression of the MAB_2300-MAB_2301 genes, encoding an MmpS-MmpL efflux pump. Here, in silico studies identified a second mmpS-mmpL (MAB_1135c-MAB_1134c) target of MAB_2299c. A palindromic DNA sequence upstream of MAB_1135c, sharing strong homology with the one located upstream of MAB_2300, was found to form a complex with the MAB_2299c regulator in electrophoretic mobility shift assays. Deletion of MAB_1135c-1134c in a wild-type strain led to increased susceptibility to both CFZ and BDQ. In addition, deletion of these genes in a CFZ/BDQ-susceptible mutant lacking MAB_2299c as well as MAB_2300-MAB_2301 further exacerbated the sensitivity of this strain to both drugs in vitro and inside macrophages. Overall, these results indicate that MAB_1135c-1134c encodes a new MmpS-MmpL efflux pump system involved in the intrinsic resistance to CFZ and BDQ. They also support the view that MAB_2299c controls the expression of two separate MmpS-MmpL efflux pumps, substantiating the importance of MAB_2299c as a marker of resistance to be considered when assessing drug susceptibility in clinical isolates.


2004 ◽  
Vol 186 (3) ◽  
pp. 730-739 ◽  
Author(s):  
Ching-ju Chen ◽  
Deborah M. Tobiason ◽  
Christopher E. Thomas ◽  
William M. Shafer ◽  
H. Steven Seifert ◽  
...  

ABSTRACT A spontaneous point mutation in pilQ (pilQ1) resulted in phenotypic suppression of a hemoglobin (Hb) receptor mutant (hpuAB mutant), allowing gonococci to grow on Hb as the sole source of iron. PilQ, formerly designated OMP-MC, is a member of the secretin family of proteins located in the outer membrane and is required for pilus biogenesis. The pilQ1 mutant also showed decreased piliation and transformation efficiency. Insertional inactivation of pilQ1 resulted in the loss of the Hb utilization phenotype and decreased entry of free heme. Despite the ability of the pilQ1 mutant to use Hb for iron acquisition and porphyrin, there was no demonstrable binding of Hb to the cell surface. The pilQ1 mutant was more sensitive to the toxic effect of free heme in growth medium and hypersensitive to the detergent Triton X-100 and multiple antibiotics. Double mutation in pilQ1 and tonB had no effect on these phenotypes, but a double pilQ1 pilT mutant showed a reduction in Hb-dependent growth and decreased sensitivity to heme and various antimicrobial agents. Insertional inactivation of wild-type pilQ also resulted in reduced entry of heme, Triton X-100, and some antibiotics. These results show that PilQ forms a channel that allows entry of heme and certain antimicrobial compounds and that a gain-of function point mutation in pilQ results in TonB-independent, PilT-dependent increase of entry.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Iman Halloum ◽  
Albertus Viljoen ◽  
Varun Khanna ◽  
Derek Craig ◽  
Christiane Bouchier ◽  
...  

ABSTRACT Available chemotherapeutic options are very limited against Mycobacterium abscessus, which imparts a particular challenge in the treatment of cystic fibrosis (CF) patients infected with this rapidly growing mycobacterium. New drugs are urgently needed against this emerging pathogen, but the discovery of active chemotypes has not been performed intensively. Interestingly, however, the repurposing of thiacetazone (TAC), a drug once used to treat tuberculosis, has increased following the deciphering of its mechanism of action and the detection of significantly more potent analogues. We therefore report studies performed on a library of 38 TAC-related derivatives previously evaluated for their antitubercular activity. Several compounds, including D6, D15, and D17, were found to exhibit potent activity in vitro against M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii clinical isolates from CF and non-CF patients. Similar to TAC in Mycobacterium tuberculosis, the three analogues act as prodrugs in M. abscessus, requiring bioactivation by the EthA enzyme, MAB_0985. Importantly, mutations in the transcriptional TetR repressor MAB_4384, with concomitant upregulation of the divergently oriented adjacent genes encoding an MmpS5/MmpL5 efflux pump system, accounted for high cross-resistance levels among all three compounds. Overall, this study uncovered a new mechanism of drug resistance in M. abscessus and demonstrated that simple structural optimization of the TAC scaffold can lead to the development of new drug candidates against M. abscessus infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 723-733 ◽  
Author(s):  
Marianne Barrier ◽  
Carlos D Bustamante ◽  
Jiaye Yu ◽  
Michael D Purugganan

Abstract Genes that have undergone positive or diversifying selection are likely to be associated with adaptive divergence between species. One indicator of adaptive selection at the molecular level is an excess of amino acid replacement fixed differences per replacement site relative to the number of synonymous fixed differences per synonymous site (ω = Ka/Ks). We used an evolutionary expressed sequence tag (EST) approach to estimate the distribution of ω among 304 orthologous loci between Arabidopsis thaliana and A. lyrata to identify genes potentially involved in the adaptive divergence between these two Brassicaceae species. We find that 14 of 304 genes (∼5%) have an estimated ω > 1 and are candidates for genes with increased selection intensities. Molecular population genetic analyses of 6 of these rapidly evolving protein loci indicate that, despite their high levels of between-species nonsynonymous divergence, these genes do not have elevated levels of intraspecific replacement polymorphisms compared to previously studied genes. A hierarchical Bayesian analysis of protein-coding region evolution within and between species also indicates that the selection intensities of these genes are elevated compared to previously studied A. thaliana nuclear loci.


Sign in / Sign up

Export Citation Format

Share Document