scholarly journals Differential Selection of Multidrug Efflux Mutants by Trovafloxacin and Ciprofloxacin in an Experimental Model ofPseudomonas aeruginosa Acute Pneumonia in Rats

2001 ◽  
Vol 45 (2) ◽  
pp. 571-576 ◽  
Author(s):  
O. F. Join-Lambert ◽  
M. Michéa-Hamzehpour ◽  
T. Köhler ◽  
F. Chau ◽  
F. Faurisson ◽  
...  

ABSTRACT The ability of trovafloxacin and ciprofloxacin to select efflux mutants in vivo was studied in a model of acute Pseudomonas aeruginosa pneumonia in rats. Twelve hours after intratracheal inoculation of 106 CFU of P. aeruginosastrain PAO1 enmeshed in agar beads, two groups of 12 rats were treated by three intraperitoneal injections of each antibiotic given every 5 h. Dosing regimens were chosen to obtain a comparable area under the concentration-time curve from 0 to infinity/MIC ratio of 27.9 min for trovafloxacin (75 mg/kg of body weight) and of 32.6 min for ciprofloxacin (12.5 mg/kg). Twelve rats were left untreated and served as controls. Rats were sacrificed 12 h after the last injection (34 h after infection) for lung bacteriological studies. Selection of resistant bacteria was determined by plating lung homogenates on Trypticase soy agar plates containing antibiotic. In untreated animals, the frequency of resistant colonies was 10-fold higher than in agar beads. Compared to controls, both treatment regimens resulted in a 2-log reduction of lung bacterial load. The frequency of resistant colonies was 10-fold less with trovafloxacin than with ciprofloxacin at twice the MIC (7.4 × 10−5 versus 8.4 × 10−4, respectively) (P < 0.05) and at four times the MIC (6.2 × 10−4 versus 5.0 × 10−5, respectively) (P < 0.05). A multidrug resistance phenotype typical of efflux mutants was observed in all 41 randomly tested colonies obtained from treated and untreated rats. In agreement with in vitro results, trovafloxacin and ciprofloxacin preferentially selected MexCD-OprJ and MexEF-OprN overproducers, respectively. These results demonstrate the differential ability of trovafloxacin and ciprofloxacin to select efflux mutants in vivo and highlight the rapid emergence of those mutants, even without treatment.

2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 766
Author(s):  
Maurizio Isola ◽  
Cristina Piccinotti ◽  
Massimiliano Magro ◽  
Luca Fasolato ◽  
Fabio Vianello ◽  
...  

The presence of bacteria of various origins on horse hoofs enables the onset of infections following trauma or even post-surgical wounds. Thus, the analysis of new antibacterial substances is of fundamental importance. In this study, the antibacterial efficacy of Iron Animals (IA), a stable colloidal suspension of iron oxide, organic acids, and detergents, was tested in vitro and in vivo. In vitro assays were performed to test the unspecific inhibitory effect of IA on both gram-positive and gram-negative bacteria monitoring the microorganism growth by spectrophotometry (optical density OD600) at 37 °C for 24 h. In vivo test consists on the quantification of the bacterial load in colony forming units per gram (CFU/g) of specimens collected from the frog region of the anterior hooves of 11 horses. Sampling followed the application of four disinfectant protocols consisting of two consecutive 3 min scrubs with 50 mL of 10% Povidone-iodine (PI) or 4% Chlorhexidine (CHx), with or without an additional application for 15 min of 10 mL of Iron Animals (PI+IA and CHx+IA). In vitro, IA completely suppressed the bacterial growth of all the tested microorganisms, resulting in effectiveness also against CHx-resistant bacteria, such as Staphylococcus aureus. In vivo, PI emerged as an ineffective protocol; CHx was effective in 18% of cases, but with the addition of IA (CHx + IA) its use emerged as the best disinfectant protocol for horse hoof, achieving the lowest bacterial load in 55% of cases. The addition of IA, after PI or CHx, improves the effectiveness of both disinfectants leading to the highest bactericidal activity in 82% of cases.


Author(s):  
Antoine Guillon ◽  
Jeoffrey Pardessus ◽  
Guillaume L’Hostis ◽  
Cindy Fevre ◽  
Celine Barc ◽  
...  

Background and Purpose. Pseudomonas aeruginosa is a main cause of ventilator-associated pneumonia (VAP) with drug-resistant bacteria. Bacteriophage therapy has experienced resurgence to compensate for the limited development of novel antibiotics. However, phage therapy is limited to a compassionate use so far, resulting from lack of adequate studies in relevant pharmacological models. We used a pig model of VAP caused by P. aeruginosa that recapitulates essential features of human disease to study the antimicrobial efficacy of nebulized-phage therapy. Experimental Approach. (i) Lysis kinetic assays were performed to evaluate in vitro phage antibacterial efficacy against P. aeruginosa and select relevant combinations of lytic phages. (ii) The efficacy of the phage combinations was investigated in vivo (murine model of P. aeruginosa lung infection). (iii) We determined the optimal conditions to ensure efficient phage delivery by aerosol during mechanical ventilation. (iv) Lung antimicrobial efficacy of inhaled-phage therapy was evaluated in pigs, which were anesthetized, mechanically ventilated and infected with P. aeruginosa. Key Results. By selecting an active phage cocktail and optimizing aerosol delivery conditions, we were able to deliver high phage concentrations in the lungs, which resulted in a rapid and marked reduction in P. aeruginosa density (1.5 Log reduction, p<0.001). No phage was detected in the sera and urines throughout the experiment. Conclusion and Implications. Our findings demonstrated: (i) the feasibility of delivering large amounts of active phages by nebulization during mechanical ventilation, (ii) rapid control of in situ infection by inhaled bacteriophage in an experimental model of VAP with high translational value.


Author(s):  
Chenchen Wang ◽  
Hao Lu ◽  
Manli Liu ◽  
Gaoyan Wang ◽  
Xiaodan Li ◽  
...  

Streptococcal toxic shock-like syndrome (STSLS) caused by the epidemic strain of Streptococcus suis leads to severe inflammation and high mortality. The life and health of humans and animals are also threatened by the increasingly severe antimicrobial resistance in Streptococcus suis (S. suis). To discover novel strategies for the treatment of S. suis is an urgent need. Suilysin (SLY) is considered to be an important virulence factor in the pathogenesis of S. suis. In this study, ellipticine hydrochloride (EH) was firstly reported as a compound to antagonize the hemolytic activity of SLY. In vitro, EH was found to effectively inhibit SLY-mediated hemolytic activity. Furthermore, EH and SLY had a strong affinity, thereby directly binding to SLY to interfere the hemolytic activity. Meanwhile, it was worth noting that EH was also found to have a significant antibacterial activity. In vivo, compared with traditional ampicillin, EH could not only significantly improve the survival rate of mice infected with S. suis 2 strain Sc19, but also relieve lung pathological damage. Furthermore, EH effectively decreased the levels of inflammatory cytokines (IL-6, TNF-α) and blood biochemistry (ALT, AST, CK) in Sc19-infected mice. Additionally, EH markedly reduced the bacterial load of tissues in Sc19-infected mice. In conclusion, our findings suggest that EH can be a potential compound for treating S. suis infection in view of its antibacterial and anti-hemolysin activity. Importance In recent years, the inappropriate use of antibiotics unnecessarily causes the continuous emergence of resistant bacteria. The antimicrobial resistance of Streptococcus suis (S. suis) becomes also an increasingly serious problem. Targeting virulence can reduce the selective pressure of bacteria on antibiotics, thereby alleviating the development of bacterial resistance to a certain extent. Meanwhile, the excessive inflammatory response caused by S. suis infection is considered the primary cause of acute death. Here, we found that ellipticine hydrochloride (EH) exhibited effective antibacterial and anti-hemolysin activity against S. suis in vitro. In vivo, compared with ampicillin, EH had a significant protective effect on S. suis 2 strain Sc19-infected mice. Our results indicated that EH with dual antibacterial and antivirulence effects will contribute to medicating S. suis infections and alleviating the antimicrobial resistance of S. suis to a certain extent. More importantly, EH may develop into a promising drug for the treatment of acute death caused by excessive inflammation.


2021 ◽  
Author(s):  
Jessica Bratt

<p>The spread of antibiotic resistance and the emergence of multi-drug resistant bacteria is a major threat to public health. This study investigated a unique cytosine rich DNA structure, the i-Motif to deliver soluble Ag+ as a novel antimicrobial agent (AgiMs). AgiMs were evaluated in vitro against P. aeruginosa and A. baumannii strains. AgiMs displayed significant antibacterial activity against both P. aeruginosa and A. baumannii (median MIC: 0.875 µM and 0.75 µM, respectively) by rapid, bactericidal and concentration-dependent effect. Low concentrations of AgiMs showed efficacy against PAO1 20-h biofilms, resulting in 57% reduction in biomass (5 x MIC). A single dose of AgiMs extended survival of G. Mellonella larvae, with the therapeutic benefit paralleled in the reduction of internal bacterial load. Synergistic interactions were observed with the combination of AgiMs and tobramycin, a common antibiotic used to treat P. aeruginosa infections; indicating the potential for AgiMs to reinstate the potency of current antibiotics. This silver-based agent might be an alternative to the failing antibiotic regimes for MDR resistant infections. Further in vitro and in vivo studies are warranted to confirm the therapeutic potential. </p>


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Clement Agboyibor ◽  
Jianshu Dong ◽  
Clement Yaw Effah ◽  
Emmanuel Kwateng Drokow ◽  
Waqar Pervaiz ◽  
...  

Tumors are the foremost cause of death worldwide. As a result of that, there has been a significant enhancement in the investigation, treatment methods, and good maintenance practices on cancer. However, the sensitivity and specificity of a lot of tumor biomarkers are not adequate. Hence, it is of inordinate significance to ascertain novel biomarkers to forecast the prognosis and therapy targets for tumors. This review characterized LSD1 as a biomarker in different tumors. LSD1 inhibitors in clinical trials were also discussed. The recent pattern advocates that LSD1 is engaged at sauce chromatin zones linking with complexes of multi-protein having an exact DNA-binding transcription factor, establishing LSD1 as a favorable epigenetic target, and also gives a large selection of therapeutic targets to treat different tumors. This review sturdily backing the oncogenic probable of LSD1 in different tumors indicated that LSD1 levels can be used to monitor and identify different tumors and can be a useful biomarker of progression and fair diagnosis in tumor patients. The clinical trials showed that inhibitors of LSD1 have growing evidence of clinical efficacy which is very encouraging and promising. However, for some of the inhibitors such as GSK2879552, though selective, potent, and effective, its disease control was poor as the rate of adverse events (AEs) was high in tumor patients causing clinical trial termination, and continuation could not be supported by the risk-benefit profile. Therefore, we propose that, to attain excellent clinical results of inhibitors of LSD1, much attention is required in designing appropriate dosing regimens, developing in-depth in vitro/in vivo mechanistic works of LSD1 inhibitors, and developing inhibitors of LSD1 that are reversible, safe, potent, and selective which may offer safer profiles.


2010 ◽  
Vol 54 (6) ◽  
pp. 2379-2384 ◽  
Author(s):  
Nicolas Grégoire ◽  
Sophie Raherison ◽  
Claire Grignon ◽  
Emmanuelle Comets ◽  
Manuella Marliat ◽  
...  

ABSTRACT The objective of this study was to implement a semimechanistic pharmacokinetic-pharmacodynamic (PK-PD) model to describe the effects of ciprofloxacin against Pseudomonas aeruginosa in vitro. Time-kill curves were generated with an initial inoculum close to 5 × 106CFU/ml of P. aeruginosa PAO1 and constant ciprofloxacin concentrations between 0.12 and 4.0 μg/ml (corresponding to 0.5× and 16× MIC). To support the model, phenotypic experiments were conducted with the PAO7H mutant strain, which overexpresses the MexEF OprN efflux pump and phenyl arginine β-naphthylamide (PAβN), a known efflux inhibitor of main Mex multidrug efflux systems. A population approach was used for parameter estimation. At subinhibitory ciprofloxacin concentrations (0.12 and 0.25 μg/ml), an initial CFU decay followed by regrowth was observed, attesting to rapid emergence of bacteria with increased but moderate resistance (8-fold increase of MIC). This phenomenon was mainly due to an overexpression of the Mex protein efflux pumps, as shown by a 16-fold diminution of the MIC in the presence of PAβN in these strains with low-level resistance. A PK-PD model with adaptation development was successfully used to describe these data. However, additional experiments are required to validate the robustness of this model after longer exposure periods and multiple dosing regimens, as well as in vivo.


2005 ◽  
Vol 49 (12) ◽  
pp. 5081-5091 ◽  
Author(s):  
Sara K. Olofsson ◽  
Patricia Geli ◽  
Dan I. Andersson ◽  
Otto Cars

ABSTRACT Antibiotic dosing regimens may vary in their capacity to select mutants. Our hypothesis was that selection of a more resistant bacterial subpopulation would increase with the time within a selective window (SW), i.e., when drug concentrations fall between the MICs of two strains. An in vitro kinetic model was used to study the selection of two Escherichia coli strains with different susceptibilities to cefotaxime. The bacterial mixtures were exposed to cefotaxime for 24 h and SWs of 1, 2, 4, 8, and 12 h. A mathematical model was developed that described the selection of preexisting and newborn mutants and the post-MIC effect (PME) as functions of pharmacokinetic parameters. Our main conclusions were as follows: (i) the selection between preexisting mutants increased with the time within the SW; (ii) the emergence and selection of newborn mutants increased with the time within the SW (with a short time, only 4% of the preexisting mutants were replaced by newborn mutants, compared to the longest times, where 100% were replaced); and (iii) PME increased with the area under the concentration-time curve (AUC) and was slightly more pronounced with a long elimination half-life (T 1/2) than with a short T 1/2 situation, when AUC is fixed. We showed that, in a dynamic competition between strains with different levels of resistance, the appearance of newborn high-level resistant mutants from the parental strains and the PME can strongly affect the outcome of the selection and that pharmacodynamic models can be used to predict the outcome of resistance development.


2003 ◽  
Vol 47 (2) ◽  
pp. 518-523 ◽  
Author(s):  
Inga Odenholt ◽  
Ingegerd Gustafsson ◽  
Elisabeth Löwdin ◽  
Otto Cars

ABSTRACT Optimizing pharmacokinetic/pharmacodynamic indices of antibiotics to obtain clinical and microbiological efficacy is essential, but dosing regimens must also be tailored to minimize the risk for emergence of resistance. The aim of the present study was to investigate whether certain concentrations of benzylpenicillin are critical for the selection of resistant subpopulations. A mixed culture of Streptococcus pneumoniae containing ca. 90% susceptible (MIC = 0.031 mg/liter), 9% intermediate (MIC = 0.25 mg/liter), and 1% resistant (MIC = 8 mg/liter) was studied in an in vitro kinetic model. The time that concentrations exceeded the MIC (T>MIC) for the three strains in the culture was varied by different initial concentrations of benzylpenicillin. Samples for viable counts were withdrawn at different times during 24 h and seeded on blood agar plates and on selective antibiotic-containing plates. The T>MIC varied from 46 to 100% for the susceptible strain, from 6 to 100% for the intermediate strain, and from 0 to 48% for the resistant strain. Our study, which may mimic the clinical situation with carriage of a mixed population of S. pneumoniae with different antibiotic susceptibilities, has shown that selection of resistant bacteria may easily occur if dosing regimens are only targeted toward fully susceptible strains.


2004 ◽  
Vol 48 (5) ◽  
pp. 1708-1712 ◽  
Author(s):  
William J. Weiss ◽  
Timothy Murphy ◽  
Eileen Lenoy ◽  
Mairead Young

ABSTRACT AC98-6446 is a novel semisynthetic derivative of a natural product related to the mannopeptimycins produced by Streptomyces hygroscopicus. Naturally occurring esterified mannopeptimycins exhibited excellent in vitro activity but only moderate in vivo efficacy against staphylococcal infection. The in vivo efficacy and pharmacokinetics of AC98-6446 were investigated in murine acute lethal, bacterial thigh and rat endocarditis infections. Pharmacokinetics were performed in mice, rats, monkeys, and dogs. Acute lethal infections were performed with several gram-positive isolates: Staphylococcus aureus (methicillin-susceptible and methicillin-resistant staphylococci), vancomycin-resistant Enterococcus faecalis, and penicillin-susceptible and -resistant Streptococcus pneumoniae. The 50% effective dose for all isolates tested ranged from 0.05 to 0.39 mg/kg of body weight after intravenous (i.v.) administration. Vancomycin was more than fivefold less efficacious against all of these same infections. Results of the thigh infection with S. aureus showed a static dose for AC98-6446 of 0.4 mg/kg by i.v. administration. Reduction of counts in the thigh of >2 log10 CFU were achieved with doses of 1 mg/kg. i.v. administration of 3 mg/kg twice a day for 3 days resulted in a >3 log10 reduction in bacterial counts of vancomycin-susceptible and -resistant E. faecalis in a rat endocarditis model. Pharmacokinetics of AC98-6446 showed an increase in exposure (area under the concentration-time curve) from mouse to dog species. The i.v. half-life (t 1/2) increased threefold between rodents and the higher species dosed. Efficacy of AC98-6446 has been demonstrated in several models of infection with resistant gram-positive pathogens. This glycopeptide exhibited bactericidal activity in these models, resulting in efficacy at low doses with reduction in bacterial load.


Sign in / Sign up

Export Citation Format

Share Document