scholarly journals The LisRK Signal Transduction System Determines the Sensitivity of Listeria monocytogenes to Nisin and Cephalosporins

2002 ◽  
Vol 46 (9) ◽  
pp. 2784-2790 ◽  
Author(s):  
Paul D. Cotter ◽  
Caitriona M. Guinane ◽  
Colin Hill

ABSTRACT The Listeria monocytogenes two-component signal transduction system, LisRK, initially identified in strain LO28, plays a significant role in the virulence potential of this important food-borne pathogen. Here, it is shown that, in addition to its major contribution in responding to ethanol, pH, and hydrogen peroxide stresses, LisRK is involved in the ability of the cell to tolerate important antimicrobials used in food and in medicine, e.g., the lantibiotic nisin and the cephalosporin family of antibiotics. A ΔlisK mutant (lacking the LisK histidine kinase sensor component) displays significantly enhanced resistance to the lantibiotic nisin, a greatly enhanced sensitivity to the cephalosporins, and a large reduction in the expression of three genes thought to encode a penicillin-binding protein, another histidine kinase (other than LisK), and a protein of unknown function. Confirmation of the role of LisRK was obtained when the response regulator, LisR, was overexpressed using both constitutive and inducible (nisin-controlled expression) systems. Under these conditions we observed a reversion of the ΔlisK mutant to wild-type growth kinetics in the presence of nisin. It was also found that overexpression of LisR complemented the reduced expression of two of the aforementioned genes. These results demonstrate the important role of LisRK in the response of L. monocytogenes to a number of antimicrobial agents.

2003 ◽  
Vol 47 (11) ◽  
pp. 3421-3429 ◽  
Author(s):  
Birgitte H. Kallipolitis ◽  
Hanne Ingmer ◽  
Cormac G. Gahan ◽  
Colin Hill ◽  
Lotte Søgaard-Andersen

ABSTRACT Listeria monocytogenes is a food-borne pathogen that can cause a variety of illnesses ranging from gastroenteritis to life-threatening septicemia. The β-lactam antibiotic ampicillin remains the drug of choice for the treatment of listeriosis. We have previously identified a response regulator of a putative two-component signal transduction system that plays a role in the virulence and ethanol tolerance of L. monocytogenes. Here we present evidence that the response regulator, CesR, and a histidine protein kinase, CesK, which is encoded by the gene downstream from cesR, are involved in the ability of L. monocytogenes to tolerate ethanol and cell wall-acting antibiotics of the β-lactam family. Furthermore, CesRK controls the expression of a putative extracellular peptide encoded by the orf2420 gene, located immediately downstream from cesRK. Inactivation of orf2420 revealed that it contributes to ethanol tolerance and pathogenesis in mice. Interestingly, we found that transcription of orf2420 was strongly induced by subinhibitory concentrations of various cell wall-acting antibiotics, ethanol, and lysozyme. The induction of orf2420 expression was abolished in the absence of CesRK. Our data suggest that CesRK is involved in regulating aspects of the cell envelope architecture and that changes in cell wall integrity provide a potent stimulus for CesRK-mediated regulation. These results further our understanding of how L. monocytogenes senses and responds to antibiotics that are used therapeutically in the treatment of infectious diseases.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Jennifer K. Teschler ◽  
Andrew T. Cheng ◽  
Fitnat H. Yildiz

ABSTRACT Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae. vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.


2005 ◽  
Vol 73 (11) ◽  
pp. 7406-7412 ◽  
Author(s):  
Lori A. Bibb ◽  
Natalie D. King ◽  
Carey A. Kunkle ◽  
Michael P. Schmitt

ABSTRACT The Corynebacterium diphtheriae hmuO gene encodes a heme oxygenase that is involved in the utilization of heme as an iron source. Transcription of hmuO is activated by heme or hemoglobin and repressed by iron and DtxR. Previous studies with Escherichia coli showed that heme-dependent transcriptional activation of an hmuO promoter-lacZ fusion was dependent on the cloned C. diphtheriae chrA and chrS genes (chrAS), which encode the response regulator and sensor kinase, respectively, of a two-component signal transduction system. In this study, nonpolar deletions in the chrAS genes were constructed on the chromosome of C. diphtheriae. Mutations in chrAS resulted in marked reduction in heme-dependent transcription of hmuO, which indicates that the ChrA/S system is a key regulator at the hmuO promoter. However, low but significant levels of heme-specific transcriptional activity were observed at the hmuO promoter in the chrAS mutants, suggesting that an additional heme-dependent activator is involved in hmuO expression. The chrAS mutants were also sensitive to heme, which was observed only in stationary-phase cultures and correlated with reduced cell viability. The heme sensitivity of the mutants was not due to reduced expression of hmuO, and these results suggest that additional factors controlled by the ChrA/S system may be involved in protection against heme toxicity. Transcriptional analysis of the chrAS operon revealed that it was not autoregulated or affected by iron or heme levels.


2005 ◽  
Vol 1725 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Efthimia E. Lioliou ◽  
Eleni P. Mimitou ◽  
Asterios I. Grigoroudis ◽  
Cynthia H. Panagiotidis ◽  
Christos A. Panagiotidis ◽  
...  

2007 ◽  
Vol 189 (19) ◽  
pp. 7007-7013 ◽  
Author(s):  
Travis J. Muff ◽  
Richard M. Foster ◽  
Peter J. Y. Liu ◽  
George W. Ordal

ABSTRACT Bacterial chemotaxis involves the regulation of motility by a modified two-component signal transduction system. In Escherichia coli, CheZ is the phosphatase of the response regulator CheY but many other bacteria, including Bacillus subtilis, use members of the CheC-FliY-CheX family for this purpose. While Bacillus subtilis has only CheC and FliY, many systems also have CheX. The effect of this three-phosphatase system on chemotaxis has not been studied previously. CheX was shown to be a stronger CheY-P phosphatase than either CheC or FliY. In Bacillus subtilis, a cheC mutant strain was nearly complemented by heterologous cheX expression. CheX was shown to overcome the ΔcheC adaptational defect but also generally lowered the counterclockwise flagellar rotational bias. The effect on rotational bias suggests that CheX reduced the overall levels of CheY-P in the cell and did not truly replicate the adaptational effects of CheC. Thus, CheX is not functionally redundant to CheC and, as outlined in the discussion, may be more analogous to CheZ.


2000 ◽  
Vol 182 (5) ◽  
pp. 1423-1426 ◽  
Author(s):  
Peter De Wulf ◽  
E. C. C. Lin

ABSTRACT In Escherichia coli, the CpxA-CpxR two-component signal transduction system and the ςE and ς32response pathways jointly regulate gene expression in adaptation to adverse conditions. These include envelope protein distress, heat shock, oxidative stress, high pH, and entry into stationary phase. Certain mutant versions of the CpxA sensor protein (CpxA* proteins) exhibit an elevated ratio of kinase to phosphatase activity on CpxR, the cognate response regulator. As a result, CpxA* strains display numerous phenotypes, many of which cannot be easily related to currently known functions of the CpxA-CpxR pathway. It is unclear whether CpxA* phenotypes are caused solely by hyperphosphorylation of CpxR. We here report that all of the tested CpxA* phenotypes depend on elevated levels of CpxR-P and not on cross-signalling of CpxA* to noncognate response regulators.


2015 ◽  
Vol 59 (7) ◽  
pp. 3789-3799 ◽  
Author(s):  
Julia J. van Rensburg ◽  
Kate R. Fortney ◽  
Lan Chen ◽  
Andrew J. Krieger ◽  
Bruno P. Lima ◽  
...  

ABSTRACTCpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA inSalmonella entericaserovar Typhimurium andHaemophilus ducreyiare avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series ofEscherichia colistrains containing a CpxR-P-responsivelacZreporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.


1998 ◽  
Vol 180 (23) ◽  
pp. 6375-6383 ◽  
Author(s):  
Céline Fabret ◽  
James A. Hoch

ABSTRACT A two-component signal transduction system encoded by theyycF and yycG genes is part of an operon containing three genes, yycH, yycI, andyycJ, with no known function and a gene, yycK, coding for an HtrA-like protease. This operon was transcribed during growth, and its transcription shut down as the cells approached stationary phase. This decreased transcription was not Spo0A dependent. The HtrA protease gene was separately controlled during sporulation from a ςG promoter. Studies using insertional inactivation plasmids revealed that neither yycF noryycG could be inactivated, whereas the other genes were inactivated without loss of viability. A temperature-sensitive YycF response regulator mutant was isolated and shown to have an H215P mutation in a putative DNA-binding domain which is closely related to the OmpR family of response regulators. At the nonpermissive temperature, cultures of the mutant strain stopped growth within 30 min, and this was followed by a decrease in optical density. Microscopically, many of the cells appeared to retain their structure while being empty of their contents. The essential processes regulated by this two-component system remain unknown. A search of the genome databases revealed YycF, YycG, and YycJ homologues encoded by three linked genes in Streptococcus pyogenes. The high level of identity of these proteins (71% for YycF) suggests that this system may play a similar role in gram-positive pathogens.


1999 ◽  
Vol 181 (17) ◽  
pp. 5330-5340 ◽  
Author(s):  
Michael P. Schmitt

ABSTRACT Corynebacterium diphtheriae, the causative agent of diphtheria, utilizes various host compounds to acquire iron. TheC. diphtheriae hmuO gene encodes a heme oxygenase that is involved in the utilization of heme and hemoglobin as iron sources. Transcription of the hmuO gene in C. diphtheriae is controlled under a dual regulatory mechanism in which the diphtheria toxin repressor protein (DtxR) and iron repress expression while either heme or hemoglobin is needed to activate transcription. In this study, two clones isolated from a C. diphtheriae chromosomal library were shown to activate transcription from the hmuO promoter in Escherichia coli. Sequence analysis revealed that these activator clones each carried distinct genes whose products had significant homology to response regulators of two-component signal transduction systems. Located upstream from each of these response regulator homologs are partial open reading frames that are predicted to encode the C-terminal portions of sensor kinases. The full-length sensor kinase gene for each of these systems was cloned from the C. diphtheriaechromosome, and constructs each carrying one complete sensor kinase gene and its cognate response regulator were constructed. One of these constructs, pTSB20, which carried the response regulator (chrA) and its cognate sensor kinase (chrS), was shown to strongly activate transcription from the hmuOpromoter in a heme-dependent manner in E. coli. A mutation in chrA (chrAD50N), which changed a conserved aspartic acid residue at position 50, the presumed site of phosphorylation by ChrS, to an asparagine, abolished heme-dependent activation. These findings suggest that the sensor kinase ChrS is involved in the detection of heme and the transduction of this signal, via a phosphotransfer mechanism, to the response regulator ChrA, which then activates transcription of the hmuO promoter. This is the first report of a bacterial two-component signal transduction system that controls gene expression through a heme-responsive mechanism.


Sign in / Sign up

Export Citation Format

Share Document