scholarly journals Tetracycline Resistance in Chlamydia suis Mediated by Genomic Islands Inserted into the Chlamydial inv-Like Gene

2004 ◽  
Vol 48 (10) ◽  
pp. 3989-3995 ◽  
Author(s):  
Jae Dugan ◽  
Daniel D. Rockey ◽  
Loren Jones ◽  
Arthur A. Andersen

ABSTRACT Many strains of Chlamydia suis, a pathogen of pigs, express a stable tetracycline resistance phenotype. We demonstrate that this resistance pattern is associated with a resistance gene, tet(C), in the chlamydial chromosome. Four related genomic islands were identified in seven tetracycline-resistant C. suis strains. All resistant isolates carry the structural gene tet(C) and the tetracycline repressor gene tetR(C). The islands share significant nucleotide sequence identity with resistance plasmids carried by a variety of different bacterial species. Three of the four tet(C) islands also carry a novel insertion sequence that is homologous to the IS605 family of insertion sequences. In each strain, the resistance gene and associated sequences are recombined into an identical position in a gene homologous to the inv gene of the yersiniae. These genomic islands represent the first examples of horizontally acquired DNA integrated into a natural isolate of chlamydiae or within any other obligate intracellular bacterium.

2006 ◽  
Vol 50 (11) ◽  
pp. 3580-3587 ◽  
Author(s):  
Stephen J. Billington ◽  
B. Helen Jost

ABSTRACT The tet(W) gene is associated with tetracycline resistance in a wide range of bacterial species, including obligately anaerobic rumen bacteria and isolates from the human gut and oral mucosa. However, little is known about how this gene is disseminated and the types of genetic elements it is carried on. We examined tetracycline-resistant isolates of the animal commensal and opportunistic pathogen Arcanobacterium pyogenes, all of which carried tet(W), and identified three genetic elements designated ATE-1, ATE-2, and ATE-3. These elements were found in 25%, 35%, and 60% of tetracycline-resistant isolates, respectively, with some strains carrying both ATE-2 and ATE-3. ATE-1 shows characteristics of a mobilizable transposon, and the tet(W) genes from strains carrying this element can be transferred at low frequencies between A. pyogenes strains. ATE-2 has characteristics of a simple transposon, carrying only the resistance gene and a transposase, while in ATE-3, the tet(W) gene is associated with a streptomycin resistance gene that is 100% identical at the DNA level with the aadE gene from the Campylobacter jejuni plasmid pCG8245. Both ATE-2 and ATE-3 show evidence of being carried on larger genetic elements, but conjugation to other strains was not observed under the conditions tested. ATE-1 was preferentially associated with A. pyogenes strains of bovine origin, while ATE-2 and ATE-3 elements were primarily found in porcine isolates, suggesting that these elements may circulate in different environments. In addition, four alleles of the tet(W) gene, primarily associated with different elements, were detected among A. pyogenes isolates.


2021 ◽  
Vol 9 (7) ◽  
pp. 1345
Author(s):  
Stefan E. Heiden ◽  
Katharina Sydow ◽  
Stephan Schaefer ◽  
Ingo Klempien ◽  
Veronika Balau ◽  
...  

The emergence of carbapenemase-producing Enterobacteriaceae limits therapeutic options and presents a major public health problem. Resistances to carbapenems are mostly conveyed by metallo-beta-lactamases (MBL) including VIM, which are often encoded on resistance plasmids. We characterized four VIM-positive isolates that were obtained as part of a routine diagnostic screening from two laboratories in north-eastern Germany between June and August 2020. Whole-genome sequencing was performed to address (a) phylogenetic properties, (b) plasmid content, and (c) resistance gene carriage. In addition, we performed phenotypic antibiotic and mercury resistance analyses. The genomic analysis revealed three different bacterial species including C. freundii, E. coli and K. oxytoca with four different sequence types. All isolates were geno- and phenotypically multidrug-resistant (MDR) and the phenotypic profile was explained by the underlying resistance gene content. Three isolates of four carried nearly identical VIM-1-resistance plasmids, which in addition encoded a mercury resistance operon and showed some similarity to two publicly available plasmid sequences from sources other than the two laboratories above. Our results highlight the circulation of a nearly identical IncN-type VIM-1-resistance plasmid in different Enterobacteriaceae in north-eastern Germany.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 65
Author(s):  
Armin Tarrah ◽  
Shadi Pakroo ◽  
Viviana Corich ◽  
Alessio Giacomini

The existence of antibiotic-resistant bacteria in food products, particularly those carrying acquired resistance genes, has increased concerns about the transmission of these genes from beneficial microbes to human pathogens. In this study, we evaluated the antibiotic resistance-susceptibility patterns of 16 antibiotics in eight S. thermophilus strains, whose genome sequence is available, using phenotypic and genomic approaches. The minimal inhibitory concentration values collected revealed intermediate resistance to aminoglycosides, whereas susceptibility was detected for different classes of β-lactams, quinolones, glycopeptide, macrolides, and sulfonamides in all strains. A high tetracycline resistance level has been detected in strain M17PTZA496, whose genome analysis indicated the presence of the tet(S) gene and the multidrug and toxic compound extrusion (MATE) family efflux pump. Moreover, an in-depth genomic analysis revealed genomic islands and an integrative and mobilizable element (IME) in the proximity of the gene tet(S). However, despite the presence of a prophage, genomic islands, and IME, no horizontal gene transfer was detected to Lactobacillus delbrueckii subsp. lactis DSM 20355 and Lactobacillusrhamnosus GG during 24 h of skim milk fermentation, 2 weeks of refrigerated storage, and 4 h of simulated gastrointestinal transit.


PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0166917 ◽  
Author(s):  
Sabrina Wanninger ◽  
Manuela Donati ◽  
Antonietta Di Francesco ◽  
Michael Hässig ◽  
Karolin Hoffmann ◽  
...  

2018 ◽  
Author(s):  
Mohammed Alorabi ◽  
Aisha M. AlAmri ◽  
Yuiko Takebayashi ◽  
Kate J. Heesom ◽  
Matthew B. Avison

AbstractThe mobile antibiotic resistance gene blaIMP-1 is clinically important and has a synonymous AAA:AAG lysine codon usage bias of 73:27. This bias is like that seen in experimentally determined highly expressed genes in Escherichia coli and Acinetobacter baumanii, but quite different from that seen in Pseudomonas aeruginosa (26:74 AAA:AAG). Here we show that, paradoxically, shifting the AAA:AAG lysine codon bias to 8:92 in blaIMP-1 expressed from a natural promoter results in significantly more IMP-1 production in all three species. Sequential site directed mutagenesis revealed that increased IMP-1 production occurs following removal of an AAA,AAA double lysine codon and that otherwise, lysine codon usage had no observable impact on IMP-1 production. We conclude that ribosomal slippage at this poly-adenosine region reduces efficient translation of IMP-1 and that punctuating the region with guanine reduces ribosomal slippage and increases IMP-1 production.


2020 ◽  
Vol 117 (38) ◽  
pp. 23762-23773
Author(s):  
Archana Pant ◽  
Satyabrata Bag ◽  
Bipasa Saha ◽  
Jyoti Verma ◽  
Pawan Kumar ◽  
...  

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome ofVibrio choleraeharbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome ofV. choleraeand examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in theV. choleraechromosome. We have deleted more than 250 acquired genes from 6 different loci in theV. choleraechromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, includingEscherichia coli. In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypassV. choleraeimmunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome ofV. choleraeto remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.


Sign in / Sign up

Export Citation Format

Share Document