scholarly journals Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses

2011 ◽  
Vol 77 (11) ◽  
pp. 3617-3625 ◽  
Author(s):  
Daniel W. Udwary ◽  
Erin A. Gontang ◽  
Adam C. Jones ◽  
Carla S. Jones ◽  
Andrew W. Schultz ◽  
...  

ABSTRACTBacteria of the genusFrankiaare mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genusFrankiahas largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences ofFrankiastrains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from otherFrankiastrains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis ofFrankiasp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed inFrankiasp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in theFrankiagenus.

2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Juan Pablo Gomez-Escribano ◽  
Jean Franco Castro ◽  
Valeria Razmilic ◽  
Scott A. Jarmusch ◽  
Gerhard Saalbach ◽  
...  

ABSTRACT Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor. The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides. IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Qiang Zhou ◽  
Guang-Cai Luo ◽  
Huizhan Zhang ◽  
Gong-Li Tang

ABSTRACT A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif. This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms. IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 298
Author(s):  
Despoina Konstantinou ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen ◽  
Spyros Gkelis

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


2021 ◽  
Author(s):  
◽  
Luke Stevenson

<p>Antibiotic discovery rates dramatically declined following the “golden age” of the 1940’s to the 1960’s. The platforms that underpinned that age of discovery rested upon laboratory cultivation of a small clade of bacteria, the actinomycetes, primarily isolated from soil environments. Fermentation extracts of these isolated bacteria have provided the majority of antibiotics and anticancer small molecules still used today. By applying modern genetic analysis techniques to these same environmental sources that have previously yielded such success, we can uncover new biosynthetic pathways, and bioactive compounds. The work described in this thesis investigated New Zealand soil metagenomes for this purpose.  Four large metagenome libraries were constructed from the microbiomes of diverse soil environments. These were then interrogated by a functional screening approach in a knockout Escherichia coli strain, to recover a large collection of the biosynthetic gene clusters responsible for bacterial secondary metabolite production. Using different modes of bioinformatic analysis, these gene clusters were demonstrated to have both phylogenetic divergence, and functional difference from bacterial biosynthesis pathways previously discovered from culture based studies.  Two additional biosynthetic pathways were recovered from one of these metagenome libraries, and in each case found to have novel genetic features. These gene clusters were further studied by heterologous expression within Streptomyces albus production hosts. One of these gene clusters produced small aromatic polyketide compounds, the structure of one of which was solved by chemical analytic techniques, and found to be a new chemical entity.  The second gene cluster was demonstrated to have similarity to known aureolic acid biosynthesis gene clusters – a class of potent anticancer natural products. Heterologous expression resulted in the production of many metabolites, two of which were characterised and found to be new members of this chemical class.  The research in this thesis both validates the use of metagenomic analysis for future natural product discovery efforts, and adds to a growing body of evidence that understudied clades of bacteria have an untapped biosynthetic potential that can be accessed by metagenomic methods.</p>


2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Janetta Top ◽  
Jan C. Sinnige ◽  
Ellen C. Brouwer ◽  
Guido Werner ◽  
Jukka Corander ◽  
...  

ABSTRACTGenomic comparison of the first six DutchvanD-type vancomycin-resistantEnterococcus faecium(VRE) isolates with fourvanDgene clusters from other enterococcal species and anaerobic gut commensals revealed that thevanDgene cluster was located on a genomic island of variable size. Phylogenetic inferences revealed that the Dutch VRE isolates were genetically not closely related and that genetic variation of thevanD-containing genomic island was not species specific, suggesting that this island is transferred horizontally between enterococci and anaerobic gut commensals.


2018 ◽  
Vol 11 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Seyed Mehdi Jazayeri ◽  
Mahtab Pooralinaghi ◽  
Ronald Oswaldo Villamar Torres

Transcription factors (TF) are the elements, which regulate gene expression. Regulatory function of TFs play an important role in plant biological processes and mechanisms. They may interconnect with other transcription factors or functional genes to modulate their expression in response to an internal/external factor like life cycle stage, growth, development and stress. Arabidopsis is the well-known and the most used model organism. Transcription factors of three Arabidopsis species including A. halleri, A. lyrata and A. thaliana, were compared. basic/helix-loop-helix (bHLH) with 220 TFs was the most abundant family among three Arabidopsis species while MYB and MYB related families considering as a whole group were more than bHLH with 308 TFs. No STERILE APETALA (SAP) TF homolog was found for A.halleri.  The common transcription factors among three species were 4,172 grouped in 1,212 clusters. The species-specific clustered TFs were 12, 30 and 58 for A. halleri, A. lyrata and A. thaliana respectively. Eight hundred ninety two single-copy gene clusters those have one gene copy from each species, i.e. 2,676 genes, were listed. Four hundred forty five TF singletons were not clustered and are unique among three species. For clustered TF belonging to each species, GO terms and SwissProt hits showed that A. halleri has two species-specific TFs involved in heavy metal response including Zinc finger protein AZF2 and two-component response regulator ARR11 while for A. lyrata specific TFs are involved in stress response and plant development. A. thaliana specific clustered TFs work on plant flower development and acclimation.


2018 ◽  
Vol 11 (1) ◽  
pp. 1-9
Author(s):  
Seyed Mehdi Jazayeri ◽  
Mahtab Pooralinaghi ◽  
Ronald Villamar Torres ◽  
Luz García Cruzatty

Transcription factors (TF) are the elements, which regulate gene expression. Regulatory function of TFs play an important role in plant biological processes and mechanisms. They may interconnect with other transcription factors or functional genes to modulate their expression in response to an internal/external factor like life cycle stage, growth, development and stress. Arabidopsis is the well-known and the most used model organism. Transcription factors of three Arabidopsis species including A. halleri, A. lyrata and A. thaliana, were compared. basic/helix-loop-helix (bHLH) with 220 TFs was the most abundant family among three Arabidopsis species while MYB and MYB related families considering as a whole group were more than bHLH with 308 TFs. No STERILE APETALA (SAP) TF homolog was found for A.halleri.  The common transcription factors among three species were 4,172 grouped in 1,212 clusters. The species-specific clustered TFs were 12, 30 and 58 for A. halleri, A. lyrata and A. thaliana respectively. Eight hundred ninety two single-copy gene clusters those have one gene copy from each species, i.e. 2,676 genes, were listed. Four hundred forty five TF singletons were not clustered and are unique among three species. For clustered TF belonging to each species, GO terms and SwissProt hits showed that A. halleri has two species-specific TFs involved in heavy metal response including Zinc finger protein AZF2 and two-component response regulator ARR11 while for A. lyrata specific TFs are involved in stress response and plant development. A. thaliana specific clustered TFs work on plant flower development and acclimation.


2015 ◽  
Vol 81 (13) ◽  
pp. 4339-4350 ◽  
Author(s):  
Qi Zhang ◽  
James R. Doroghazi ◽  
Xiling Zhao ◽  
Mark C. Walker ◽  
Wilfred A. van der Donk

ABSTRACTLanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters fromActinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.


2015 ◽  
Vol 83 (5) ◽  
pp. 2156-2167 ◽  
Author(s):  
Sabina Leanti La Rosa ◽  
Lars-Gustav Snipen ◽  
Barbara E. Murray ◽  
Rob J. L. Willems ◽  
Michael S. Gilmore ◽  
...  

In the present study, the commensal and pathogenic host-microbe interaction ofEnterococcus faecaliswas explored using aCaenorhabditis elegansmodel system. The virulence of 28E. faecalisisolates representing 24 multilocus sequence types (MLSTs), including human commensal and clinical isolates as well as isolates from animals and of insect origin, was investigated usingC. elegansstrainglp-4(bn2ts);sek-1(km4). This revealed that 6E. faecalisisolates behaved in a commensal manner with no nematocidal effect, while the remaining strains showed a time to 50% lethality ranging from 47 to 120 h. Principal component analysis showed that the difference in nematocidal activity explained 94% of the variance in the data. Assessment of known virulence traits revealed that gelatinase and cytolysin production accounted for 40.8% and 36.5% of the observed pathogenicity, respectively. However, coproduction of gelatinase and cytolysin did not increase virulence additively, accounting for 50.6% of the pathogenicity and therefore indicating a significant (26.7%) saturation effect. We employed a comparative genomic analysis approach using the 28 isolates comprising a collection of 82,356 annotated coding sequences (CDS) to identify 2,325 patterns of presence or absence among the investigated strains. Univariate statistical analysis of variance (ANOVA) established that individual patterns positively correlated (n= 61) with virulence. The patterns were investigated to identify potential new virulence traits, among which we found five patterns consisting of the phage03-like gene clusters. Strains harboring phage03 showed, on average, 17% higher killing ofC. elegans(P= 4.4e−6). The phage03 gene cluster was also present in gelatinase-and-cytolysin-negative strainE. faecalisJH2-2. Deletion of this phage element from the JH2-2 clinical strain rendered the mutant apathogenic inC. elegans, and a similar mutant of the nosocomial V583 isolate showed significantly attenuated virulence. Bioinformatics investigation indicated that, unlike otherE. faecalisvirulence traits, phage03-like elements were found at a higher frequency among nosocomial isolates. In conclusion, our report provides a valuable virulence map that explains enhancement inE. faecalisvirulence and contributes to a deeper comprehension of the genetic mechanism leading to the transition from commensalism to a pathogenic lifestyle.


2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Joseph Basalla ◽  
Payel Chatterjee ◽  
Elizabeth Burgess ◽  
Mahnur Khan ◽  
Emily Verbrugge ◽  
...  

ABSTRACT Since the discovery of penicillin, microbes have been a source of antibiotics that inhibit the growth of pathogens. However, with the evolution of multidrug-resistant (MDR) strains, it remains unclear if there is an abundant or limited supply of natural products to be discovered that are effective against MDR isolates. To identify strains that are antagonistic to pathogens, we examined a set of 471 globally derived environmental Pseudomonas strains (env-Ps) for activity against a panel of 65 pathogens including Achromobacter spp., Burkholderia spp., Pseudomonas aeruginosa, and Stenotrophomonas spp. isolated from the lungs of cystic fibrosis (CF) patients. From more than 30,000 competitive interactions, 1,530 individual inhibitory events were observed. While strains from water habitats were not proportionate in antagonistic activity, MDR CF-derived pathogens (CF-Ps) were less susceptible to inhibition by env-Ps, suggesting that fewer natural products are effective against MDR strains. These results advocate for a directed strategy to identify unique drugs. To facilitate discovery of antibiotics against the most resistant pathogens, we developed a workflow in which phylogenetic and antagonistic data were merged to identify strains that inhibit MDR CF-Ps and subjected those env-Ps to transposon mutagenesis. Six different biosynthetic gene clusters (BGCs) were identified from four strains whose products inhibited pathogens including carbapenem-resistant P. aeruginosa. BGCs were rare in databases, suggesting the production of novel antibiotics. This strategy can be utilized to facilitate the discovery of needed antibiotics that are potentially active against the most drug-resistant pathogens. IMPORTANCE Carbapenem-resistant P. aeruginosa is difficult to treat and has been deemed by the World Health Organization as a priority one pathogen for which antibiotics are most urgently needed. Although metagenomics and bioinformatic studies suggest that natural bacteria remain a source of novel compounds, the identification of genes and their products specific to activity against MDR pathogens remains problematic. Here, we examine water-derived pseudomonads and identify gene clusters whose compounds inhibit CF-derived MDR pathogens, including carbapenem-resistant P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document