scholarly journals Capture and Retention of Cryptosporidium parvum Oocysts by Pseudomonas aeruginosa Biofilms

2006 ◽  
Vol 72 (9) ◽  
pp. 6242-6247 ◽  
Author(s):  
Kristin E. Searcy ◽  
Aaron I. Packman ◽  
Edward R. Atwill ◽  
Thomas Harter

ABSTRACT The association of Cryptosporidium oocysts with biofilm communities can influence the propagation of this pathogen through both environmental systems and water treatment systems. We observed the capture and retention of C. parvum oocysts in Pseudomonas aeruginosa biofilms using laboratory flow cells. Biofilms were developed in two different growth media using two different strains of P. aeruginosa, a wild-type strain (PAO1) and a strain that overproduces the exopolysaccharide alginate (PDO300). Confocal laser-scanning microscopy was used in conjunction with image analysis to assess the structure of the biofilms prior to introducing oocysts into the flow cells. More oocysts were captured by the biofilm-coated surfaces than the abiotic glass surface in both media. There was no significant difference in capture across the two strains of P. aeruginosa biofilm, but the fraction of oocysts captured was positively related to biofilm roughness and surface-area-to-volume ratio. Once captured, oocysts were retained in the biofilm for more than 24 h and were not released after a 40-fold increase in the system flow rate. We believe the capture and retention of oocysts by biofilm communities can impact the environmental transmission of C. parvum, and this interaction should be taken into consideration when predicting the migration of pathogens in the environment.

2020 ◽  
Vol 10 (17) ◽  
pp. 6096
Author(s):  
Ronald Wigler ◽  
Shlomo Matalon ◽  
Tomer Goldberger ◽  
Anat Or Lerner ◽  
Anda Kfir

This study aimed to determine the bactericidal efficacy of sequential use of NaOCl pH 12 followed by acidified NaOCl pH 6.5, and compare it to that of either of these NaOCl solutions alone. E. faecalis biofilm was grown on standardized dentine specimens for four weeks. The specimens were randomly divided into four groups: (A) 4 min exposure to 0.9% saline solution (control); (B) 4 min exposure to 4% NaOCl pH 12; (C) 4 min exposure to 4% NaOCl pH 6.5; and (D) 2 min exposure to 4% NaOCl pH 12 followed by 2 min exposure to 4% NaOCl pH 6.5. The bactericidal activity was evaluated after the 4 min of contact time using confocal laser scanning microscopy. The volume ratio of red fluorescence to green and red fluorescence indicated the proportion of dead cells in the biofilm. The percent of dead cells in the saline solution group was significantly lower than those in the other groups. There was no significant difference between NaOCl pH 12 compared to NaOCl pH 6.5. The sequential use of NaOCl pH 12 followed by pH 6.5 significantly increased the percent of dead cells compared to both the samples exposed to either NaOCl pH 12 or pH 6.5. These results show that sequential irrigation protocol had a stronger bactericidal effect than the commonly used NaOCl pH 12.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


2020 ◽  
Author(s):  
Shuangfeng Liu ◽  
Yanxia Zhu ◽  
Tana Gegen

Abstract The objective of this study was to analyze morphologically the all-etching bonding system and self-etching bonding system for enamel with different degrees of fluorosis and evaluate the bond strength of each system. Teeth that were indicated for extraction owing to orthodontic or periodontal problems were selected. According to Dean’s index and the Thylstrup-Fejerskov index, 180 extracted teeth were divided into three groups of mild, moderate, and severe dental fluorosis (DF), with 60 teeth in each group. The teeth in each group were randomly divided into two subgroups (n = 30), which were then subjected to the all-etching bonding system (Prime & Bond NT) and self-etching bonding system (SE-Bond). Each group of adhesives was used to bond Z350 universal resin (3M) to the etched dental enamel. Tensile and shear tests were conducted to determine the bond strength. Subsequently, the fractured specimens were investigated using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The Prime & Bond NT was statistically significant for the tensile and shear strength of enamel with mild fluorosis (P < 0.05) but did not exhibit a significant difference for moderate and severe DF (P > 0.05). The SE-Bond was not statistically significant for the tensile and shear strength of mild, moderate, or severe DF (P > 0.05). The SEM and CLSM results reveal that the mild fluorosis enamel crystals were relatively dense, and a small amount of resin remained. The moderate fluorosis enamel crystals were loosely arranged, and the gaps were widened. The severe fluorosis enamel crystals were irregularly arranged. The disorder was aggravated, and the dentinal orifice was exposed by partial enamel exfoliation. The bonding strength of mild fluorosis enamel with the Prime & Bond NT was better than that with the SE-Bond, and cohesive failure was the most common mode of failure. Because there was no difference in the bonding strength of the SE-Bond for different degrees of DF, we recommend the use of the all-etching adhesive system in the clinical treatment of teeth with mild fluorosis.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Li ◽  
Qian Zhang ◽  
Xiaoying Zou ◽  
Lin Yue

Abstract The aim of this study was to compare the efficiency of four final irrigation protocols in smear layer removal and bacterial inhibition in root canal systems. Thirty roots inoculated with Enterococcus faecalis were prepared with ProTaper Universal files. The teeth were disinfected by conventional needle irrigation, sonic agitation using the EndoActivator device, passive ultrasonic irrigation, or an M3 Max file. Teeth with no root canal preparation served as blank controls for the establishment of the infection baseline. Teeth with preparation but no final irrigation served as a post-instrumentation baseline. After the final irrigation, the teeth were sectioned in half. One half of each tooth was examined by scanning electron microscopy (SEM) to assess smear layer removal using a five-point scale. The other half was examined by confocal laser scanning microscopy (CLSM) using the LIVE/DEAD BackLight bacterial viability kit to evaluate the depth of bacterial survival in dentinal tubules. SEM analysis revealed no significant difference in smear layer removal throughout the whole canal among the EA, PUI, and M3 Max groups (P > 0.05). CLSM revealed that PUI achieved the greatest bacterial inhibition depth in the coronal ((174.27 ± 31.63) μm), middle ((160.94 ± 37.77) μm), and apical ((119.53 ± 28.49) μm) thirds of the canal (all P < 0.05 vs. other groups). According to this comprehensive SEM and CLSM evaluation, PUI appears to have the best infection control ability in root canal systems.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Alison A. Jack ◽  
Saira Khan ◽  
Lydia C. Powell ◽  
Manon F. Pritchard ◽  
Konrad Beck ◽  
...  

ABSTRACT Pseudomonas aeruginosa plays a major role in many chronic infections. Its ability to readily form biofilms contributes to its success as an opportunistic pathogen and its resistance/tolerance to antimicrobial/antibiotic therapy. A low-molecular-weight alginate oligomer (OligoG CF-5/20) derived from marine algae has previously been shown to impair motility in P. aeruginosa biofilms and disrupt pseudomonal biofilm assembly. As these bacterial phenotypes are regulated by quorum sensing (QS), we hypothesized that OligoG CF-5/20 may induce alterations in QS signaling in P. aeruginosa . QS regulation was studied by using Chromobacterium violaceum CV026 biosensor assays that showed a significant reduction in acyl homoserine lactone (AHL) production following OligoG CF-5/20 treatment (≥2%; P < 0.05). This effect was confirmed by liquid chromatography-mass spectrometry analysis of C 4 -AHL and 3-oxo-C 12 -AHL production (≥2%; P < 0.05). Moreover, quantitative PCR showed that reduced expression of both the las and rhl systems was induced following 24 h of treatment with OligoG CF-5/20 (≥0.2%; P < 0.05). Circular dichroism spectroscopy indicated that these alterations were not due to steric interaction between the AHL and OligoG CF-5/20. Confocal laser scanning microscopy (CLSM) and COMSTAT image analysis demonstrated that OligoG CF-5/20-treated biofilms had a dose-dependent decrease in biomass that was associated with inhibition of extracellular DNA synthesis (≥0.5%; P < 0.05). These changes correlated with alterations in the extracellular production of the pseudomonal virulence factors pyocyanin, rhamnolipids, elastase, and total protease ( P < 0.05). The ability of OligoG CF-5/20 to modify QS signaling in P. aeruginosa PAO1 may influence critical downstream functions such as virulence factor production and biofilm formation.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2283
Author(s):  
Sekelwa Cosa ◽  
Jostina R. Rakoma ◽  
Abdullahi A. Yusuf ◽  
Thilivhali E. Tshikalange

Pseudomonas aeruginosa is the causative agent of several life-threatening human infections. Like many other pathogens, P. aeruginosa exhibits quorum sensing (QS) controlled virulence factors such as biofilm during disease progression, complicating treatment with conventional antibiotics. Thus, impeding the pathogen’s QS circuit appears as a promising alternative strategy to overcome pseudomonas infections. In the present study, Calpurnia aurea were evaluated for their antibacterial (minimum inhibitory concentrations (MIC)), anti-quorum sensing/antivirulence (AQS), and antibiofilm potential against P. aeruginosa. AQS and antivirulence (biofilm formation, swimming, and swarming motility) activities of plant extracts were evaluated against Chromobacterium violaceum and P. aeruginosa, respectively. The in vitro AQS potential of the individual compounds were validated using in silico molecular docking. Acetone and ethanolic extracts of C. aurea showed MIC at 1.56 mg/mL. The quantitative violacein inhibition (AQS) assay showed ethyl acetate extracts as the most potent at a concentration of 1 mg/mL. GCMS analysis of C. aurea revealed 17 compounds; four (pentadecanol, dimethyl terephthalate, terephthalic acid, and methyl mannose) showed potential AQS through molecular docking against the CviR protein of C. violaceum. Biofilm of P. aeruginosa was significantly inhibited by ≥60% using 1-mg/mL extract of C. aurea. Confocal laser scanning microscopy correlated the findings of crystal violet assay with the extracts significantly altering the swimming motility. C. aurea extracts reduced the virulence of pseudomonas, albeit in a strain- and extract-specific manner, showing their suitability for the identification of lead compounds with QS inhibitory potential for the control of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document