scholarly journals Genomic and Biochemical Analysis of N Glycosylation in the Mushroom-Forming Basidiomycete Schizophyllum commune

2009 ◽  
Vol 75 (13) ◽  
pp. 4648-4652 ◽  
Author(s):  
Elsa Berends ◽  
Robin A. Ohm ◽  
Jan F. de Jong ◽  
Gerard Rouwendal ◽  
Han A. B. Wösten ◽  
...  

ABSTRACT N-linked glycans of Schizophyllum commune consist of Man5-9GlcNAc2 structures. Lack of further glycan maturation is explained by the absence of genes encoding such functions in this and other homobasidiomycetes. N-linked glycans in vegetative mycelium and fruiting bodies of S. commune are mainly Man7GlcNAc2 and Man5GlcNAc2, respectively, suggesting more efficient mannose trimming in the mushroom.

2021 ◽  
Author(s):  
Laszlo G Nagy ◽  
Peter Jan Vonk ◽  
Markus Kunzler ◽  
Csenge Foldi ◽  
Mate Viragh ◽  
...  

Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates tissue differentiation, growth and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim to comprehensively identify conserved genes related to fruiting body morphogenesis and distill novel functional hypotheses for functionally poorly characterized genes. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide informed hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defense, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10% of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Key words: functional annotation; comparative genomics; cell wall remodeling; development; fruiting body morphogenesis; mushroom; transcriptome


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 410-415
Author(s):  
N. Mongkontanawat ◽  
D. Thumrongchote

Schizophyllum commune Fr., a native mushroom of Thailand, has a high nutritional value and is classified as a mushroom with medicinal properties that can neutralize the growth of many cancer cells. This research aimed to study the effect of S. commune strains and the extraction methods on the quantity and properties of β-glucan. The five S. commune Fr. strains used in this research consisted of Chanthaburi, 85-022, 85-023, 85-031, and 85- 043. There were two different β-glucan extraction methods employed: hot water (M1) and hot alkali extraction (M2), which were compared with the control (native-MR). The results indicated that the Chanthaburi strain has the highest β-glucan content 49.20±0.35% (w/w), and high potential antioxidant activity (79.14±0.77 DPPH% and 50.92±0.48 ABTS%) (p < 0.05). The extraction methods did not affect the yield of β-glucan, except the antioxidant properties and chemical structure of the extract substance. The extract substance from M2 has significantly the highest potential antioxidant activity (80.22±0.51). A mushroom juice drink in cans was developed using 1-day-old MR and adjusted pH of more than 7, which can increase the antioxidant properties of the product.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 707-716 ◽  
Author(s):  
J S Horton ◽  
C A Raper

Abstract A DNA sequence capable of inducing the de novo development of fruiting bodies (mushrooms) when integrated into the genome of unmated, nonfruiting strains of the Basidiomycete Schizophyllum commune has been isolated and partially characterized. This sequence, designated FRT1, overrides the normal requirement of a mating interaction for fruiting in this organism. It has been shown to integrate stably in different chromosome locations and appears to be trans-acting. It also enhances the normal process of fruiting that occurs after mating. Additional DNA sequences with similarity to FRT1 were detected within the genome of the strain of origin by hybridization of labeled FRT1 DNA to blots of digested genomic DNAs. FRT1 and the genomic sequences similar to it were shown to be genetically linked. Southern hybridization experiments suggested sequence divergence at the FRT1 locus between different strains of S. commune. A testable model for how FRT1 may act as a key element in the pathway for the differentiation of fruiting bodies is presented as a working hypothesis for further investigation.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1545-1563 ◽  
Author(s):  
Ramona Lütkenhaus ◽  
Stefanie Traeger ◽  
Jan Breuer ◽  
Laia Carreté ◽  
Alan Kuo ◽  
...  

Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora. With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.


2016 ◽  
Vol 62 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Young Min Lee ◽  
Hanbyul Lee ◽  
Young Mok Heo ◽  
Hwanhwi Lee ◽  
Joo-Hyun Hong ◽  
...  

1999 ◽  
Vol 181 (19) ◽  
pp. 6028-6032 ◽  
Author(s):  
Monique Sabaty ◽  
Carole Schwintner ◽  
Sandrine Cahors ◽  
Pierre Richaud ◽  
Andre Verméglio

ABSTRACT We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp.denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.


2016 ◽  
Vol 65 (3) ◽  
pp. 295-305 ◽  
Author(s):  
Monika Osińska-Jaroszuk ◽  
Magdalena Jaszek ◽  
Justyna Sulej ◽  
Dawid Stefaniuk ◽  
Monika Urbaniak ◽  
...  

The present study examined Polish strains of Flamulina velutipes as a potential source of nutraceuticals and found that their nutritional value is dependent on the fruiting bodies gathering time. To prove the above hypothesis protein, carbohydrate and phenolic substances concentration were determined. Moreover, catalase, superoxide dismutase, cellobiose dehydrogenase activities were assayed. In order to prove the healing properties of Enoki fruiting bodies the obtained extracts were tested for antioxidant and bacteriostatic abilities. We have proved that Polish F. velutipes fruiting bodies may be a rich source of antioxidants and that they are capable of inhibiting Staphylococcus aureus growth.


2002 ◽  
Vol 68 (8) ◽  
pp. 3891-3898 ◽  
Author(s):  
María M. Peñas ◽  
Brian Rust ◽  
Luis M. Larraya ◽  
Lucía Ramírez ◽  
Antonio G. Pisabarro

ABSTRACT Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune.


Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1491-1503 ◽  
Author(s):  
Thomas J Fowler ◽  
Michael F Mitton ◽  
Lisa J Vaillancourt ◽  
Carlene A Raper

AbstractSchizophyllum commune has thousands of mating types defined in part by numerous lipopeptide pheromones and their G-protein-coupled receptors. These molecules are encoded within multiple versions of two redundantly functioning B mating-type loci, Bα and Bβ. Compatible combinations of pheromones and receptors, produced by individuals of different B mating types, trigger a pathway of fertilization required for sexual development. Analysis of the Bβ2 mating-type locus revealed a large cluster of genes encoding a single pheromone receptor and eight different pheromones. Phenotypic effects of mutations within these genes indicated that small changes in both types of molecules could significantly alter their specificity of interaction. For example, a conservative amino acid substitution in a pheromone resulted in a gain of function toward one receptor and a loss of function with another. A two-amino-acid deletion from a receptor precluded the mutant pheromone from activating the mutant receptor, yet this receptor was activated by other pheromones. Sequence comparisons provided clues toward understanding how so many variants of these multigenic loci could have evolved through duplication and mutational divergence. A three-step model for the origin of new variants comparable to those found in nature is presented.


Sign in / Sign up

Export Citation Format

Share Document