scholarly journals Evaluation of Near-Infrared Pasteurization in Controlling Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in Ready-To-Eat Sliced Ham

2012 ◽  
Vol 78 (18) ◽  
pp. 6458-6465 ◽  
Author(s):  
Jae-Won Ha ◽  
Sang-Ryeol Ryu ◽  
Dong-Hyun Kang

ABSTRACTThis study was conducted to investigate the efficacy of near-infrared (NIR) heating to reduceSalmonella entericaserovar Typhimurium,Escherichia coliO157:H7, andListeria monocytogenesin ready-to-eat (RTE) sliced ham compared to conventional convective heating, and the effect of NIR heating on quality was determined by measuring the color and texture change. A cocktail of three pathogens was inoculated on the exposed or protected surfaces of ham slices, followed by NIR or conventional heating at 1.8 kW. NIR heating for 50 s achieved 4.1-, 4.19-, and 3.38-log reductions in surface-inoculatedS.Typhimurium,E. coliO157:H7, andL. monocytogenes, respectively, whereas convective heating needed 180 s to attain comparable reductions for each pathogen. There were no statistically significant (P> 0.05) differences in reduction between surface- and internally inoculated pathogens at the end of NIR treatment (50 s). However, when treated with conventional convective heating, significant (P< 0.05) differences were observed at the final stages of the treatment (150 and 180 s). Color values and texture parameters of NIR-treated (50-s treatment) ham slices were not significantly (P> 0.05) different from those of nontreated samples. These results suggest that NIR heating can be applied to control internalized pathogens as well as surface-adhering pathogens in RTE sliced meats without affecting product quality.

2013 ◽  
Vol 79 (23) ◽  
pp. 7122-7129 ◽  
Author(s):  
Il-Kyu Park ◽  
Dong-Hyun Kang

ABSTRACTThe effect of electric field-induced ohmic heating for inactivation ofEscherichia coliO157:H7,Salmonella entericaserovar Typhimurium, andListeria monocytogenesin buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (P< 0.05) from that resulting from conventional heating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (P< 0.05), and these differences increased with increasing levels of inactivation of three food-borne pathogens. These results demonstrate that ohmic heating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.


2013 ◽  
Vol 79 (15) ◽  
pp. 4613-4619 ◽  
Author(s):  
Patrick Studer ◽  
Werner E. Heller ◽  
Jörg Hummerjohann ◽  
David Drissner

ABSTRACTSprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated withEscherichia coliO157:H7,Salmonella entericasubsp.entericaserovar Weltevreden, andListeria monocytogenesScott A. In addition, a recently collectedE. coliO178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations ofE. coliO157:H7 andS. entericaon alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies.L. monocytogenesandE. coliO178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).


2012 ◽  
Vol 78 (15) ◽  
pp. 5424-5431 ◽  
Author(s):  
Anice Sabag-Daigle ◽  
Jitesh A. Soares ◽  
Jenée N. Smith ◽  
Mohamed E. Elmasry ◽  
Brian M. M. Ahmer

ABSTRACTIn this study, we tested the hypothesis that the SdiA proteins ofEscherichia coliandSalmonella entericaserovar Typhimurium respond to indole. While indole was found to have effects on gene expression and biofilm formation, these effects were notsdiAdependent. However, high concentrations of indole did inhibitN-acyl-l-homoserine lactone (AHL) sensing by SdiA. We conclude that SdiA does not respond to indole but indole can inhibit SdiA activity inE. coliandSalmonella.


2015 ◽  
Vol 81 (6) ◽  
pp. 2226-2232 ◽  
Author(s):  
Live L. Nesse ◽  
Kristin Berg ◽  
Lene K. Vestby

ABSTRACTPolyamines are present in all living cells. In bacteria, polyamines are involved in a variety of functions, including biofilm formation, thus indicating that polyamines may have potential in the control of unwanted biofilm. In the present study, the effects of the polyamines norspermidine and spermidine on biofilms of 10 potentially pathogenic wild-type strains ofEscherichia coliserotype O103:H2,Salmonella entericasubsp.entericaserovar Typhimurium, andS. entericaserovar Agona were investigated. We found that exogenously supplied norspermidine and spermidine did not mediate disassembly of preformed biofilm of any of theE. coliandS. entericastrains. However, the polyamines did affect biofilm production. Interestingly, the two species reacted differently to the polyamines. Both polyamines reduced the amount of biofilm formed byE. colibut tended to increase biofilm formation byS. enterica. Whether the effects observed were due to the polyamines specifically targeting biofilm formation, being toxic for the cells, or maybe a combination of the two, is not known. However, there were no indications that the effect was mediated through binding to exopolysaccharides, as earlier suggested forE. coli. Our results indicate that norspermidine and spermidine do not have potential as inhibitors ofS. entericabiofilm. Furthermore, we found that the commercial polyamines used contributed to the higher pH of the test medium. Failure to acknowledge and control this important phenomenon may lead to misinterpretation of the results.


2003 ◽  
Vol 69 (5) ◽  
pp. 2959-2963 ◽  
Author(s):  
Min-Suk Rhee ◽  
Sun-Young Lee ◽  
Richard H. Dougherty ◽  
Dong-Hyun Kang

ABSTRACT This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22°C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (106 to 107 CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22°C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5°C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22°C than at 5°C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xuan Wang-Kan ◽  
Giovanny Rodríguez-Blanco ◽  
Andrew D. Southam ◽  
Catherine L. Winder ◽  
Warwick B. Dunn ◽  
...  

ABSTRACT In the fight against antibiotic resistance, drugs that target resistance mechanisms in bacteria can be used to restore the therapeutic effectiveness of antibiotics. The multidrug resistance efflux complex AcrAB-TolC is the most clinically relevant efflux pump in Enterobacterales and is a target for drug discovery. Inhibition of the pump protein AcrB allows the intracellular accumulation of a wide variety of antibiotics, effectively restoring their therapeutic potency. To facilitate the development of AcrB efflux inhibitors, it is desirable to discover the native substrates of the pump, as these could be chemically modified to become inhibitors. We analyzed the native substrate profile of AcrB in Escherichia coli MG1655 and Salmonella enterica serovar Typhimurium SL1344 using an untargeted metabolomics approach. We analyzed the endo- and exometabolome of the wild-type strain and their respective AcrB loss-of-function mutants (AcrB D408A) to determine the metabolites that are native substrates of AcrB. Although there is 95% homology between the AcrB proteins of S. Typhimurium and E. coli, we observed mostly different metabolic responses in the exometabolomes of the S. Typhimurium and E. coli AcrB D408A mutants relative to those in the wild type, potentially indicating a differential metabolic adaptation to the same mutation in these two species. Additionally, we uncovered metabolite classes that could be involved in virulence of S. Typhimurium and a potential natural substrate of AcrB common to both species. IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a global threat to human health. The AcrB efflux pump confers inherent and evolved drug resistance to Enterobacterales, including Escherichia coli and Salmonella enterica serovar Typhimurium. We provide insights into the physiological role of AcrB: (i) we observe that loss of AcrB function in two highly related species, E. coli and S. Typhimurium, has different biological effects despite AcrB conferring drug resistance to the same groups of antibiotics in both species, and (ii) we identify potential natural substrates of AcrB, some of which are in metabolite classes implicated in the virulence of S. Typhimurium. Molecules that inhibit multidrug efflux potentiate the activity of old, licensed, and new antibiotics. The additional significance of our research is in providing data about the identity of potential natural substrates of AcrB in both species. Data on these will facilitate the discovery of, and/or could be chemically modified to become, new efflux inhibitors.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P &gt; 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2018 ◽  
Vol 84 (8) ◽  
pp. e02567-17 ◽  
Author(s):  
H. Bart van den Berg van Saparoea ◽  
Diane Houben ◽  
Marien I. de Jonge ◽  
Wouter S. P. Jong ◽  
Joen Luirink

ABSTRACT The Escherichia coli virulence factor hemoglobin protease (Hbp) has been engineered into a surface display system that can be expressed to high density on live E. coli and Salmonella enterica serovar Typhimurium cells or derived outer membrane vesicles (OMVs). Multiple antigenic sequences can be genetically fused into the Hbp core structure for optimal exposure to the immune system. Although the Hbp display platform is relatively tolerant, increasing the number, size, and complexity of integrated sequences generally lowers the expression of the fused constructs and limits the density of display. This is due to the intricate mechanism of Hbp secretion across the outer membrane and the efficient quality control of translocation-incompetent chimeric Hbp molecules in the periplasm. To address this shortcoming, we explored the coupling of purified proteins to the Hbp carrier after its translocation across the outer membrane using the recently developed SpyTag/SpyCatcher protein ligation system. As expected, fusion of the small SpyTag to Hbp did not hamper display on OMVs. Subsequent addition of purified proteins fused to the SpyCatcher domain resulted in efficient covalent coupling to Hbp-SpyTag. Using in addition the orthogonal SnoopTag/SnoopCatcher system, multiple antigen modules could be coupled to Hbp in a sequential ligation strategy. Not only antigens proved suitable for Spy-mediated ligation but also nanobodies. Addition of this functionality to the platform might allow the targeting of live bacterial or OMV vaccines to certain tissues or immune cells to tailor immune responses.IMPORTANCE Outer membrane vesicles (OMVs) derived from Gram-negative bacteria attract increasing interest in the development of vaccines and therapeutic agents. We aim to construct a semisynthetic OMV platform for recombinant antigen presentation on OMVs derived from attenuated Salmonella enterica serovar Typhimurium cells displaying an adapted Escherichia coli autotransporter, Hbp, at the surface. Although this autotransporter accepts substantial modifications, its capacity with respect to the number, size, and structural complexity of the antigens genetically fused to the Hbp carrier is restricted. Here we describe the application of SpyCatcher/SpyTag protein ligation technology to enzymatically link antigens to Hbp present at high density in OMVs. Protein ligation was apparently unobstructed by the membrane environment and allowed a high surface density of coupled antigens, a property we have shown to be important for vaccine efficacy. The OMV coupling procedure appears versatile and robust, allowing fast production of experimental vaccines and therapeutic agents through a modular plug-and-display procedure.


Sign in / Sign up

Export Citation Format

Share Document