scholarly journals A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis

2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Jian-qiang Jin ◽  
Shin-ichi Hachisuka ◽  
Takaaki Sato ◽  
Tsuyoshi Fujiwara ◽  
Haruyuki Atomi

ABSTRACT Lipoic acid is a sulfur-containing cofactor and a component of the glycine cleavage system (GCS) involved in C1 compound metabolism and the 2-oxoacid dehydrogenases that catalyze the oxidative decarboxylation of 2-oxoacids. Lipoic acid is found in all domains of life and is generally synthesized as a lipoyl group on the H-protein of the GCS or the E2 subunit of 2-oxoacid dehydrogenases. Lipoyl synthase catalyzes the insertion of two sulfur atoms to the C-6 and C-8 carbon atoms of the octanoyl moiety on the octanoyl-H-protein or octanoyl-E2 subunit. Although the hyperthermophilic archaeon Thermococcus kodakarensis seemed able to synthesize lipoic acid, a classical lipoyl synthase (LipA) gene homolog cannot be found on the genome. In this study, we aimed to identify the lipoyl synthase in this organism. Genome information analysis suggested that the TK2109 and TK2248 genes, which had been annotated as biotin synthase (BioB), are both involved in lipoic acid metabolism. Based on the chemical reaction catalyzed by BioB, we predicted that the genes encode proteins that catalyze the lipoyl synthase reaction. Genetic analysis of TK2109 and TK2248 provided evidence that these genes are involved in lipoic acid biosynthesis. The purified TK2109 and TK2248 recombinant proteins exhibited lipoyl synthase activity toward a chemically synthesized octanoyl-octapeptide. These in vivo and in vitro analyses indicated that the TK2109 and TK2248 genes encode a structurally novel lipoyl synthase. TK2109 and TK2248 homologs are widely distributed among the archaeal genomes, suggesting that in addition to the LipA homologs, the two proteins represent a new group of lipoyl synthases in archaea. IMPORTANCE Lipoic acid is an essential cofactor for GCS and 2-oxoacid dehydrogenases, and α-lipoic acid has been utilized as a medicine and attracted attention as a supplement due to its antioxidant activity. The biosynthesis pathways of lipoic acid have been established in Bacteria and Eucarya but not in Archaea. Although some archaeal species, including Sulfolobus, possess a classical lipoyl synthase (LipA) gene homolog, many archaeal species, including T. kodakarensis, do not. In addition, the biosynthesis mechanism of the octanoyl moiety, a precursor for lipoyl group biosynthesis, is also unknown for many archaea. As the enzyme identified in T. kodakarensis most likely represents a new group of lipoyl synthases in Archaea, the results obtained in this study provide an important step in understanding how lipoic acid is synthesized in this domain and how the two structurally distinct lipoyl synthases evolved in nature.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Takahiro Shimosaka ◽  
Kira S. Makarova ◽  
Eugene V. Koonin ◽  
Haruyuki Atomi

ABSTRACT Dephospho-coenzyme A (dephospho-CoA) kinase (DPCK) catalyzes the ATP-dependent phosphorylation of dephospho-CoA, the final step in coenzyme A (CoA) biosynthesis. DPCK has been identified and characterized in bacteria and eukaryotes but not in archaea. The hyperthermophilic archaeon Thermococcus kodakarensis encodes two homologs of bacterial DPCK and the DPCK domain of eukaryotic CoA synthase, TK1334 and TK2192. We purified the recombinant TK1334 and TK2192 proteins and found that they lacked DPCK activity. Bioinformatic analyses showed that, in several archaea, the uncharacterized gene from arCOG04076 protein is fused with the gene for phosphopantetheine adenylyltransferase (PPAT), which catalyzes the reaction upstream of the DPCK reaction in CoA biosynthesis. This observation suggested that members of arCOG04076, both fused to PPAT and standalone, could be the missing archaeal DPCKs. We purified the recombinant TK1697 protein, a standalone member of arCOG04076 from T. kodakarensis, and demonstrated its GTP-dependent DPCK activity. Disruption of the TK1697 resulted in CoA auxotrophy, indicating that TK1697 encodes a DPCK that contributes to CoA biosynthesis in T. kodakarensis. TK1697 homologs are widely distributed in archaea, suggesting that the arCOG04076 protein represents a novel family of DPCK that is not homologous to bacterial and eukaryotic DPCKs but is distantly related to bacterial and eukaryotic thiamine pyrophosphokinases. We also constructed and characterized gene disruption strains of TK0517 and TK2128, homologs of bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and PPAT, respectively. Both strains displayed CoA auxotrophy, indicating their contribution to CoA biosynthesis. Taken together with previous studies, the results experimentally validate the entire CoA biosynthesis pathway in T. kodakarensis. IMPORTANCE CoA is utilized in a wide range of metabolic pathways, and its biosynthesis is essential for all life. Pathways for CoA biosynthesis in bacteria and eukaryotes have been established. In archaea, however, the enzyme that catalyzes the final step in CoA biosynthesis, dephospho-CoA kinase (DPCK), had not been identified. In the present study, bioinformatic analyses identified a candidate for the DPCK in archaea, which was biochemically and genetically confirmed in the hyperthermophilic archaeon Thermococcus kodakarensis. Genetic analyses on genes presumed to encode bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and phosphopantetheine adenylyltransferase confirmed their involvement in CoA biosynthesis. Taken together with previous studies, the results reveal the entire pathway for CoA biosynthesis in a single archaeon and provide insight into the different mechanisms of CoA biosynthesis and their distribution in nature.


2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Tomoko Fujisawa ◽  
Shohei Fujinaga ◽  
Haruyuki Atomi

ABSTRACT We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima. The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively. IMPORTANCE myo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol.


2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Shin-ichi Hachisuka ◽  
Takaaki Sato ◽  
Haruyuki Atomi

ABSTRACT NAD+ is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD+ is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD+ concentrations and possibly remove and/or reuse undesirable degradation products of NAD+. Here we confirmed that at 85°C, thermal degradation of NAD+ results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD+ in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD+ breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD+ is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal degradation to ADP-ribose and nicotinamide. Here we show that an ADP-ribose pyrophosphatase homolog from the hyperthermophilic archaeon Thermococcus kodakarensis converts the detrimental ADP-ribose to ribose 5-phosphate and AMP, compounds that can be directed to central carbon metabolism. This physiological role for ADP-ribose pyrophosphatases might be universal in hyperthermophiles, as their homologs are widely distributed among both hyperthermophilic bacteria and archaea.


2019 ◽  
Vol 201 (21) ◽  
Author(s):  
Akira Hirata ◽  
Takeo Suzuki ◽  
Tomoko Nagano ◽  
Daishiro Fujii ◽  
Mizuki Okamoto ◽  
...  

ABSTRACT tRNA m2G10/m22G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N2,N2-dimethylguanosine (m22G10) via N2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2′-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2′-O-methyluridine at position 20, 5,2′-O-dimethylcytidine at position 32, and 2′-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m22G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m22G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures. IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp. The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.


2013 ◽  
Vol 79 (7) ◽  
pp. 2209-2217 ◽  
Author(s):  
Xi Wu ◽  
Chong Zhang ◽  
Izumi Orita ◽  
Tadayuki Imanaka ◽  
Toshiaki Fukui ◽  
...  

ABSTRACTA novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeonThermococcus kodakarensisKOD1 (TkADH). The gene,tk0845, which encodes an aldo-keto reductase, was heterologously expressed inEscherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparentKmvalues for the cofactors NAD(P)+and NADPH were similar within a range of 66 to 127 μM.TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at themetaandparapositions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee).TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50%n-hexane orn-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Yasuyuki Yamamoto ◽  
Tamotsu Kanai ◽  
Tsuyoshi Kaneseki ◽  
Haruyuki Atomi

ABSTRACT TrpY from Methanothermobacter thermautotrophicus is a regulator that inhibits transcription of the Trp biosynthesis (trp) operon. Here, we show that the TrpY homolog in Thermococcus kodakarensis is not involved in such regulation. There are 87 genes on the T. kodakarensis genome predicted to encode transcriptional regulators (TRs). By screening for TRs that specifically bind to the promoter of the trp operon of T. kodakarensis, we identified TK0271. The gene resides in the aro operon, responsible for the biosynthesis of chorismate, a precursor for Trp, Tyr, and Phe. TK0271 was expressed in Escherichia coli, and the protein, here designated Tar (Thermococcales aromatic amino acid regulator), was purified. Tar specifically bound to the trp promoter with a dissociation constant (Kd) value of approximately 5 nM. Tar also bound to the promoters of the Tyr/Phe biosynthesis (tyr-phe) and aro operons. The protein recognized a palindromic sequence (TGGACA-N8-TGTCCA) conserved in these promoters. In vitro transcription assays indicated that Tar activates transcription from all three promoters. We cultivated T. kodakarensis in amino acid-based medium and found that transcript levels of the trp, tyr-phe, and aro operons increased in the absence of Trp, Tyr, or Phe. We further constructed a TK0271 gene disruption strain (ΔTK0271). Growth of ΔTK0271 was similar to that of the host strain in medium including Trp, Tyr, and Phe but was significantly impaired in the absence of any one of these amino acids. The results suggest that Tar is responsible for the transcriptional activation of aromatic amino acid biosynthesis genes in T. kodakarensis. IMPORTANCE The mechanisms of transcriptional regulation in archaea are still poorly understood. In this study, we identified a transcriptional regulator in the hyperthermophilic archaeon Thermococcus kodakarensis that activates the transcription of three operons involved in the biosynthesis of aromatic amino acids. The study represents one of only a few that identifies a regulator in Archaea that activates transcription. The results also imply that transcriptional regulation of genes with the same function is carried out by diverse mechanisms in the archaea, depending on the lineage.


2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Ben Turner ◽  
Brett W. Burkhart ◽  
Katrin Weidenbach ◽  
Robert Ross ◽  
Patrick A. Limbach ◽  
...  

ABSTRACT Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea. G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensis. IMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei. Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


2016 ◽  
Vol 198 (14) ◽  
pp. 1906-1917 ◽  
Author(s):  
Alexandra M. Gehring ◽  
Julie E. Walker ◽  
Thomas J. Santangelo

The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus.Archaeaare reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticatedin vivoandin vitroinvestigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.


2013 ◽  
Vol 80 (3) ◽  
pp. 1108-1115 ◽  
Author(s):  
Nasir Ahmad ◽  
Naeem Rashid ◽  
Muhammad Saleem Haider ◽  
Mehwish Akram ◽  
Muhammad Akhtar

ABSTRACTA novel thermoacidophilic pullulan-hydrolyzing enzyme (PUL) from hyperthermophilic archaeonThermococcus kodakarensis(TK-PUL) that efficiently hydrolyzes starch under industrial conditions in the absence of any additional metal ions was cloned and characterized. TK-PUL possessed both pullulanase and α-amylase activities. The highest activities were observed at 95 to 100°C. Although the enzyme was active over a broad pH range (3.0 to 8.5), the pH optima for both activities were 3.5 in acetate buffer and 4.2 in citrate buffer. TK-PUL was stable for several hours at 90°C. Its half-life at 100°C was 45 min when incubated either at pH 6.5 or 8.5. TheKmvalue toward pullulan was 2 mg ml−1, with aVmaxof 109 U mg−1. Metal ions were not required for the activity and stability of recombinant TK-PUL. The enzyme was able to hydrolyze both α-1,6 and α-1,4 glycosidic linkages in pullulan. The most preferred substrate, after pullulan, was γ-cyclodextrin, which is a novel feature for this type of enzyme. Additionally, the enzyme hydrolyzed a variety of polysaccharides, including starch, glycogen, dextrin, amylose, amylopectin, and cyclodextrins (α, β, and γ), mainly into maltose. A unique feature of TK-PUL was the ability to hydrolyze maltotriose into maltose and glucose.


Sign in / Sign up

Export Citation Format

Share Document