scholarly journals Improving the Thermostability and Activity of a Thermophilic Subtilase by Incorporating Structural Elements of Its Psychrophilic Counterpart

2015 ◽  
Vol 81 (18) ◽  
pp. 6302-6313 ◽  
Author(s):  
Bi-Lin Xu ◽  
Meihong Dai ◽  
Yuanhao Chen ◽  
Dongheng Meng ◽  
Yasi Wang ◽  
...  

ABSTRACTThe incorporation of the structural elements of thermostable enzymes into their less stable counterparts is generally used to improve enzyme thermostability. However, the process of engineering enzymes with both high thermostability and high activity remains an important challenge. Here, we report that the thermostability and activity of a thermophilic subtilase were simultaneously improved by incorporating structural elements of a psychrophilic subtilase. There were 64 variable regions/residues (VRs) in the alignment of the thermophilic WF146 protease, mesophilic sphericase, and psychrophilic S41. The WF146 protease was subjected to systematic mutagenesis, in which each of its VRs was replaced with those from S41 and sphericase. After successive rounds of combination and screening, we constructed the variant PBL5X with eight amino acid residues from S41. The half-life of PBL5X at 85°C (57.1 min) was approximately 9-fold longer than that of the wild-type (WT) WF146 protease (6.3 min). The substitutions also led to an increase in the apparent thermal denaturation midpoint temperature (Tm) of the enzyme by 5.5°C, as determined by differential scanning calorimetry. Compared to the WT, PBL5X exhibited high caseinolytic activity (25 to 95°C) and high values ofKmandkcat(25 to 80°C). Our study may provide a rational basis for developing highly stable and active enzymes, which are highly desired in industrial applications.

2020 ◽  
Vol 97 (5) ◽  
pp. 464-476
Author(s):  
Sreeshna Jagadeesan ◽  
Indira Govindaraju ◽  
Nirmal Mazumder

Abstract Potatoes are highly consumed food around the world, usually following processing of some kind. Apart from its noteworthy presence in diets, potato starch has a multitude of industrial applications as a food additive and recently in novel domains such as nanotechnology and bioengineering. This review examines the microscopic and spectroscopic methods of characterizing potato starch and compares the different properties. The microscopic techniques such as optical microscopy and Scanning Electron Microscopy (SEM) allow observation of structural elements of potato starch. Differential Scanning Calorimetry (DSC) delves into the thermal behavior of starch in presence of water, while Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD) analyze the behavior of various chemical bonds and crystallinity of starch. These characterizations are important from a dietary point of view for patients requiring a low-glycemic diet, as well as in facilitating research into a wider array of industrial applications.


2021 ◽  
Author(s):  
Weigao Wang ◽  
Siva Dasetty ◽  
Sapna Sarupria ◽  
Mark Blenner

While thermophilic enzymes have thermostability desired for broad industrial applications, they can lose activity at ambient temperatures far from their optimal. Engineering cold activity into thermophilic enzymes has the potential to broaden the range of temperatures resulting in significant activity (i.e., decreasing the temperature dependence of kcat). Even though it has been widely suggested that cold temperature enzyme activity results from active flexibility that is at odds with the rigidity necessary for thermostable enzymes; however, directed evolution experiments have shown us these properties are not mutually exclusive. In this study, rational protein engineering was used to introduce flexibility inducing mutations around the active sites of Geobacillus thermocatenulatus lipase (GTL). Two mutants were found to have enhanced specific activity compared to wild-type at temperatures between 283 K to 363 K with p-nitrophenol butyrate but not with larger substrates. Kinetics assay revealed both mutations resulted in psychrophilic traits, such as lower activation enthalpy and more negative entropy values compared to wild type in all substrates. Furthermore, the mutants had significantly improved thermostability compared to wild type enzyme, which proves that it is feasible to improve the cold activity without trade-off. Our study provides insight into the enzyme cold adaptation mechanism and design principles for engineering cold activity into thermostable enzymes.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 320
Author(s):  
Thaís Pereira da Silva ◽  
Fernando Jacomini de Castro ◽  
Larissa Vuitika ◽  
Nayanne Louise Costacurta Polli ◽  
Bruno César Antunes ◽  
...  

Phospholipases-D (PLDs) found in Loxosceles spiders’ venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents—L. gaucho and L. laeta—were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.


Pteridines ◽  
2017 ◽  
Vol 28 (2) ◽  
pp. 97-103
Author(s):  
Hye-Lim Kim ◽  
Hyun-Chul Ryu ◽  
Young Shik Park

AbstractDictyostelium discoideum Ax2 is well-known for the synthesis of d-threo-tetrahydrobiopterin (DH4) with a smaller amount of l-erythro-tetrahydrobiopterin (BH4). DH4 synthesis from 6-pyruvoyltetrahydropterin (PPH4) is catalyzed by aldose reductase (AR)-like protein and sepiapterin reductase (SR) via an intermediate 1′-oxo-2′-d-hydroxypropyl tetrahydropterin, which is non-enzymatically oxidized to d-sepiapterin in the absence of SR. However, l-sepiapterin was a dominant product in the reaction of a cellular extract of spr− disrupted in the SR gene. In order to investigate its potential role in tetrahydropteridine synthesis, the enzyme catalyzing l-sepiapterin synthesis from PPH4 was purified from spr−. Via mass spectrometry, the protein was identified to be encoded by alrA. AlrA consists of 297 amino acid residues sharing a high sequence identity with human AR. However, in the co-incubation assay, DH4 synthesis was not detected and, furthermore, the recombinant AlrA was observed to suppress BH4 synthesis by SR, which was known to prefer 1′-oxo-2′-d-hydroxypropyl tetrahydropterin to PPH4. Although intracellular DH4 level in alrA− was decreased to 60% of the wild type, it is presumed to result from the antioxidant function of DH4. Therefore, despite the structural and catalytic identities with human AR, AlrA seems to be involved in neither BH4, nor DH4 synthesis under normal physiological conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patamalai Boonserm ◽  
Songchan Puthong ◽  
Thanaporn Wichai ◽  
Sajee Noitang ◽  
Pongsak Khunrae ◽  
...  

AbstractIt is important to understand the amino acid residues that govern the properties of the binding between antibodies and ligands. We studied the binding of two anti-norfloxacins, anti-nor 132 and anti-nor 155, and the fluoroquinolones norfloxacin, enrofloxacin, ciprofloxacin, and ofloxacin. Binding cross-reactivities tested by an indirect competitive enzyme-linked immunosorbent assay indicated that anti-nor 132 (22–100%) had a broader range of cross-reactivity than anti-nor 155 (62–100%). These cross-reactivities correlated with variations in the numbers of interacting amino acid residues and their positions. Molecular docking was employed to investigate the molecular interactions between the fluoroquinolones and the monoclonal antibodies. Homology models of the heavy chain and light chain variable regions of each mAb 3D structure were docked with the fluoroquinolones targeting the crucial part of the complementarity-determining regions. The fluoroquinolone binding site of anti-nor 155 was a region of the HCDR3 and LCDR3 loops in which hydrogen bonds were formed with TYR (H:35), ASN (H:101), LYS (H:106), ASN (L:92), and ASN (L:93). These regions were further away in anti-nor 132 and could not contact the fluoroquinolones. Another binding region consisting of HIS (L:38) and ASP (H:100) was found for norfloxacin, enrofloxacin, and ciprofloxacin, whereas only ASP (H:100) was found for ofloxacin.


1999 ◽  
Vol 77 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Robert M Penner ◽  
Nathan J Roth ◽  
Beatrice Rob ◽  
Helga Lay ◽  
Reuben E Huber

Substitutions for Tyr-503 of β-galactosidase caused large decreases of the activity. Both the galactosylation (k2) and degalactosylation (k3) rates were decreased. Substitutions by residues without transferable protons, caused k3 to decrease much more than k2 while substitutions with residues having transferable protons, caused approximately equal decreases of k2 and k3. Several lines of evidence showed this. The Km values of the substituted enzymes were much smaller than those for the wild type if the substituted amino acid residues did not have transferable protons; this was not the case when the substituted residues had transferable protons. Inhibition studies showed that the Km values were not small because of small Ks values but were small because of relatively small k3 values (compared with the k2 values). The conclusion that the k3 values are small relative to k2 upon substitution with residues without transferable protons is also based upon other studies: studies indicating that the reaction rates were similar with different substrates, studies in the presence of alcohol acceptors, studies showing that the rate of inactivation by 2,4-dinitrophenyl-2-deoxy-2-F-β-D-galactopyranoside decreased much less than the rate of reactivation; studies on burst kinetics, and pH studies. The data suggest that Tyr-503 may be important for the degalactosylation reaction because of its ability to transfer protons and thereby facilitate cleavage of the transient covalent bond between galactose and Glu-537. Key words: β-galactosidase, tyrosine, mechanism, acid catalysis.


2021 ◽  
Author(s):  
Alexander J. Stirk ◽  
Fabio E. S. Souza ◽  
Jenny Gerster ◽  
Fatemeh M. Mir ◽  
Avedis Karadeolian ◽  
...  

Crystallisations on both the academic and industrial scale often use large volumes of solvent. In order decrease the environmental impact of such processes, new techniques must be discovered that increase the efficiency of the solvents used. Introduced here is a process that combines repurposed industry standard hardware and aspects of mechanochemistry to produce a technique we call “Vapour Assisted Tumbling” (VAT). Pharmaceutical and well-known cocrystals and salts were formed by tumbling the coformers in an atmosphere of vaporised solvent, in this study, methanol (MeOH). This was done inside a custom built analogue of an industrial rotary cone dryer (RCD). It was found that a desired solid form could be obtained as monitored by powder X-ray diffraction and differential scanning calorimetry. By repurposing industrial RCDs, it is feasible that solid forms can be crystallised with both minimal and reusable/recyclable solvent – drastically lowering the environmental impact of such transformations.


Author(s):  
Alshawi F M ◽  
Abdul Razzq K ◽  
Hanoosh W S

Introduction: Phenolic resins have been in use since the early twentieth century and are considered the first class of synthetic polymers to achieve commercial success, moreover phenolic resins continue to succeed and attract special interest in a large range of industrial applications such as adhesives, paints, and composites; because of their unique physical and chemical properties. Materials and Methods: Prepolymers resol resins (RR, RH, RP, and RC) were synthesized by the reaction of phenolic compounds (resorcinol, hydroquinone, phloroglucinol, and catechol) respectively, with formaldehyde at molar ratio phenol/ formaldehyde 1/1.5, using sodium hydroxide as a catalyst. These resins were characterized by FTIR. The curing reaction of these resins was evaluated using differential scanning calorimetry (DSC), while the thermal stability study was evaluated using thermogravimetric analysis (TGA). Results and Discussion:From the results showing that these prepolymers have different curing temperatures and curing energy, while the TGA study showed that the cured resins have decomposition temperature more than 300 ºC, and char residue at 650 ºC more than 60%. Conclusions: These resol resins have different gel times (8-55) min, and viscosities (435-350) mpa.s. The curing temperature of these resin obtained from DSC curves was (120, 129, 105 and 127 °C), while the thermal behavior of the cured resins obtained from TGA curves showed that these cured resin have two decomposition temperatures and the rate of decomposition in the order of RC < RR< .


1995 ◽  
Vol 15 (10) ◽  
pp. 5635-5644 ◽  
Author(s):  
Y Liu ◽  
N Mathias ◽  
C N Steussy ◽  
M G Goebl

Ubiquitin-conjugating (E2) enzymes contain several regions within their catalytic domains that are highly conserved. However, within some of these conserved regions are several residues that may be used to define different classes of catalytic domains for the E2 enzymes. One class can be defined by the Ubc1 protein, which contains K-65, D-90, and D-120, while the corresponding positions within the Cdc34 (Ubc3) protein, which defines a second class of enzymes, contain S-73, S-97, and S-139, respectively. The presence of these differences within otherwise highly conserved regions of this family suggests that these residues may be critical for the specificity of Cdc34 function or regulation. Therefore, we have constructed a series of cdc34 alleles encoding mutant proteins in which these serine residues have been changed to other amino acid residues, including alanine and aspartic acid. In vivo complementation studies showed that S-97, which lies near the active site C-95, is essential for Cdc34 function. The addition of a second mutation in CDC34, which now encoded both the S97D and S73K changes, restored partial function to the Cdc34 enzyme. Moreover, the deletion of residues 103 to 114 within Cdc34, which are not present in the Ubc1-like E2s, allowed the S73K/S97D mutant to function as efficiently as wild-type Cdc34 protein. Finally, the cloning and sequencing of the temperature-sensitive alleles of CDC34 indicated that A-62 is also unique to the Cdc34 class of E2 enzymes and that mutations at this position can be detrimental to Cdc34 function. Our results suggest that several key residues within conserved regions of the E2 enzyme family genetically interact with each other and define a class of E2 catalytic domains.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jie Liu ◽  
Yanmei Qi ◽  
Shu-Chan Hsu ◽  
Siavash Saadat ◽  
Saum Rahimi ◽  
...  

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a 24 kD glycoprotein essential for early embryonic development. Our immunofluorescence studies revealed that CREG1 is highly expressed at myocyte junctions in both embryonic and adult hearts. To explore it role in cardiomyogenesis, we employed gain- and loss-of-function analyses demonstrating that CREG1 is required for the differentiation of mouse embryonic stem (ES) cell into cohesive myocardium-like structures. Chimeric cultures of wild-type and CREG1 knockout ES cells expressing cardiac-specific reporters showed that the cardiomyogenic effect of CREG1 is cell autonomous. Furthermore, we identified a novel interaction between CREG1 and Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Mutations of the amino acid residues D141 and P142 to alanine in CREG1 abolished its binding to Sec8. To address the role of the CREG1-Sec8 interaction in cardiomyogenesis, we rescued CREG1 knockout ES cells with wild-type and Sec8-binding mutant CREG1 and showed that CREG1 binding to Sec8 promotes cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8 and N-cadherin all localize at cell-cell adhesion sites. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. Finally, shRNA-mediated knockdown of Sec8 leads to cardiomyogenic defects similar to CREG1 knockout. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis.


Sign in / Sign up

Export Citation Format

Share Document