scholarly journals Identification of Natural Mutations Responsible for Altered Infection Phenotypes of Salmonella enterica Clinical Isolates by Using Cell Line Infection Screens

2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Rafał Kolenda ◽  
Michał Burdukiewicz ◽  
Marcjanna Wimonć ◽  
Adrianna Aleksandrowicz ◽  
Aamir Ali ◽  
...  

ABSTRACT The initial steps of Salmonella pathogenesis involve adhesion to and invasion into host epithelial cells. While well-studied for Salmonella enterica serovar Typhimurium, the factors contributing to this process in other, host-adapted serovars remains unexplored. Here, we screened clinical isolates of serovars Gallinarum, Dublin, Choleraesuis, Typhimurium, and Enteritidis for adhesion to and invasion into intestinal epithelial cell lines of human, porcine, and chicken origins. Thirty isolates with altered infectivity were used for genomic analyses, and 14 genes and novel mutations associated with high or low infectivity were identified. The functions of candidate genes included virulence gene expression regulation and cell wall or membrane synthesis and components. The role of several of these genes in Salmonella adhesion to and invasion into cells has not previously been investigated. The genes dksA (encoding a stringent response regulator) and sanA (encoding a vancomycin high-temperature exclusion protein) were selected for further analyses, and we confirmed their roles in adhesion to and invasion into host cells. Furthermore, transcriptomic analyses were performed for S. Enteritidis and S. Typhimurium, with two highly infective and two marginally infective isolates for each serovar. Expression profiles for the isolates with altered infection phenotypes revealed the importance of type 3 secretion system expression levels in the determination of an isolate’s infection phenotype. Taken together, these data indicate a new role in cell host infection for genes or gene variants previously not associated with adhesion to and invasion into the epithelial cells. IMPORTANCE Salmonella is a foodborne pathogen affecting over 200 million people and resulting in over 200,000 fatal cases per year. Its adhesion to and invasion into intestinal epithelial cells represent one of the first and key steps in the pathogenesis of salmonellosis. Still, around 35 to 40% of bacterial genes have no experimentally validated function, and their contribution to bacterial virulence, including adhesion and invasion, remains largely unknown. Therefore, the significance of this study is in the identification of new genes or gene allelic variants previously not associated with adhesion and invasion. It is well established that blocking adhesion and/or invasion would stop or hamper bacterial infection; therefore, the new findings from this study could be used in future developments of anti-Salmonella therapy targeting genes involved in these key processes. Such treatment could be a valuable alternative, as the prevalence of antibiotic-resistant bacteria is increasing very rapidly.

2021 ◽  
Author(s):  
Jason R Devlin ◽  
William Santus ◽  
Jorge Mendez ◽  
Wenjing Peng ◽  
Aiying Yu ◽  
...  

AbstractSalmonella enterica serovar Typhimurium (Salmonella) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, Salmonella produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species and the Salmonella genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during Salmonella pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. Salmonella lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient Salmonella strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed Salmonella dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type Salmonella, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of Salmonella chitinases. This analysis also revealed differential abundance of Lewis X-containing glycans that is likely a result of host cell modulation due to the detection of Salmonella chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that Salmonella chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.Author SummarySalmonella Typhimurium infection is one of the leading causes of food-borne illnesses worldwide. In order for Salmonella to effectively cause disease, it has to invade the epithelial cells lining the intestinal tract. This invasion step allows Salmonella to replicate efficiently, causing further tissue damage and inflammation. In susceptible patients, Salmonella can spread past the intestines and infect peripheral organs. It is essential to fully understand the invasion mechanism used by Salmonella to design better treatments for infection. Here, we demonstrate that the two chitinases produced by Salmonella are involved in this invasion process. We show that Salmonella chitinases interact with surface glycans of intestinal epithelial cells and promote adhesion and invasion. Using a mouse infection model, we show that Salmonella chitinases are required for the invasion of the small intestine and enhance the dissemination of Salmonella to other organs. This study reveals an additional mechanism by which Salmonella invades and causes infection.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Binjie Chen ◽  
Xianchen Meng ◽  
Jie Ni ◽  
Mengping He ◽  
Yanfei Chen ◽  
...  

AbstractSmall non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.


2004 ◽  
Vol 50 (9) ◽  
pp. 719-727 ◽  
Author(s):  
Bochiwe Hara-Kaonga ◽  
Thomas G Pistole

Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 °C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.Key words: Salmonella, adherence, porins, intestinal epithelial cells, macrophage.


2016 ◽  
Vol 79 (11) ◽  
pp. 1965-1970 ◽  
Author(s):  
SANGEETHA ANANDA BASKARAN ◽  
ANUP KOLLANOOR-JOHNY ◽  
MEERA SURENDRAN NAIR ◽  
KUMAR VENKITANARAYANAN

ABSTRACTEscherichia coli O157:H7 is a major foodborne pathogen that can cause serious human illness characterized by hemorrhagic diarrhea and kidney failure. The pathology of enterohemorrhagic E. coli O157:H7 (EHEC) infection is primarily mediated by verotoxins, which bind to the globotriaosylceramide receptor on host cells. Antibiotics are contraindicated for treating EHEC infection because they lead to increased verotoxin release, thereby increasing the risk of renal failure and death in patients. Thus, alternative strategies are needed for controlling EHEC infections in humans. This study investigated the effect of subinhibitory concentrations of five plant-derived antimicrobial agents (PDAs) that are generally considered as safe, i.e., trans-cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on EHEC motility, adhesion to human intestinal epithelial cells, verotoxin production, and virulence gene expression. All tested PDAs reduced EHEC motility and attachment to human intestinal epithelial cells (P < 0.05) and decreased verotoxin synthesis by EHEC. The reverse transcription real-time PCR data revealed that PDAs decreased the expression of critical virulence genes in EHEC (P < 0.05). The results collectively suggest that these PDAs could be used to reduce EHEC virulence, but follow-up studies in animal models are necessary to validate these findings.


2017 ◽  
Vol 11 (12) ◽  
pp. e0006120 ◽  
Author(s):  
Showgy Y. Ma’ayeh ◽  
Jingyi Liu ◽  
Dimitra Peirasmaki ◽  
Katarina Hörnaeus ◽  
Sara Bergström Lind ◽  
...  

2000 ◽  
Vol 68 (12) ◽  
pp. 6763-6769 ◽  
Author(s):  
A. M. Prouty ◽  
J. S. Gunn

ABSTRACT As enteric pathogens, the salmonellae have developed systems by which they can sense and adapt appropriately to deleterious intestinal components that include bile. Previously, growth in the presence of bile was shown to repress the transcription of prgH, a locus encoding components of the Salmonella pathogenicity island I (SPI-1) type III secretion system (TTSS) necessary for eukaryotic cell invasion. This result suggested an existing interaction between salmonellae, bile, and eukaryotic cell invasion. Transcription assays demonstrated that invasion gene regulators (e.g.,sirC and invF) are repressed by bile. However, bile does not interact with any of the invasion regulators directly but exerts its effect at or upstream of the two-component system at the apex of the invasion cascade, SirA-BarA. As suggested by the repression of invasion gene transcription in the presence of bile, Western blot analysis demonstrated that proteins secreted by the SPI-1 TTSS were markedly reduced in the presence of bile. Furthermore, Salmonella enterica serovar Typhimurium grown in the presence of bile was able to invade epithelial cells at only 4% of the level of serovar Typhimurium grown without bile. From these data, we propose a model whereby serovar Typhimurium uses bile as an environmental signal to repress its invasive capacity in the lumen of the intestine, but upon mucous layer penetration and association with intestinal epithelial cells, where the apparent bile concentration would be reduced, the system would become derepressed and invasion would be initiated.


Sign in / Sign up

Export Citation Format

Share Document