scholarly journals Pseudomonas brassicacearum Strain DF41 Kills Caenorhabditis elegans through Biofilm-Dependent and Biofilm-Independent Mechanisms

2016 ◽  
Vol 82 (23) ◽  
pp. 6889-6898 ◽  
Author(s):  
Munmun Nandi ◽  
Chrystal Berry ◽  
Ann Karen C. Brassinga ◽  
Mark F. Belmonte ◽  
W. G. Dilantha Fernando ◽  
...  

ABSTRACTPseudomonas brassicacearumDF41 is a biocontrol agent that suppresses disease caused by the fungal pathogenSclerotinia sclerotiorum. A number of exometabolites are produced by DF41, including the lipopeptide sclerosin, hydrogen cyanide (HCN), and degradative enzymes. The production of these compounds is controlled at both the transcriptional and posttranscriptional levels by quorum sensing (QS) and the Gac two-component regulatory system. In order to be successful, a biocontrol agent must persist in the environment at levels sufficient for pathogen control. Bacterivorous predators, including nematodes, represent a challenge to the establishment of introduced microorganisms. In the current study, DF41 was investigated for its ability to resist predation byCaenorhabditis elegans. We discovered that this bacterium is capable of killingC. elegansthrough two different mechanisms: the first involves exposure to toxic metabolites, and the second entails biofilm formation on the nematode head blocking the buccal cavity. Biofilm formation on nematodes, which has been reported only forYersiniaspp. andXenorhabdus nematophila, is dependent upon the Gac system. Biofilms were not observed when bacteria were grown on NaCl-containing medium or onC. elegansbiofilm-resistant mutants. Coculturing with nematodes led to the increased expression of thepdfRI-rfiAQS genes andhcnA, which is under QS control. HCN was the most nematicidal of the exometabolites, suggesting that this bacterium can respond to predator cues and upregulate expression of toxins accordingly. In summary, DF41 is able to respond to the presence ofC. elegans, and through two distinct mechanisms, it can escape predation.IMPORTANCEPseudomonas brassicacearumDF41 can suppress fungal pathogens through a process known as biocontrol. To be successful, a biocontrol agent must be able to persist in the environment at levels sufficient for pathogen control. Predators, including the nematodeCaenorhabditis elegans, represent a threat to persistence. The aim of the current study was to investigate the DF41-C. elegansinteraction. We discovered that DF41 is able to escape predation through two distinct mechanisms. The first involves exposure to toxic bacterial metabolites, and the second entails the formation of a sticky coating on the nematode head, called a biofilm, which blocks feeding and causes starvation. We report here a pseudomonad forming biofilms on theC. eleganssurface. When grown withC. elegans, DF41 exhibits altered gene expression and metabolite production, indicating that this bacterium can sense the presence of these predators and adjust its physiology accordingly.

2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Don B. Gammon

ABSTRACT Since 1999, Caenorhabditis elegans has been extensively used to study microbe-host interactions due to its simple culture, genetic tractability, and susceptibility to numerous bacterial and fungal pathogens. In contrast, virus studies have been hampered by a lack of convenient virus infection models in nematodes. The recent discovery of a natural viral pathogen of C. elegans and development of diverse artificial infection models are providing new opportunities to explore virus-host interplay in this powerful model organism.


2014 ◽  
Vol 83 (1) ◽  
pp. 17-27 ◽  
Author(s):  
George W. P. Joshua ◽  
Steve Atkinson ◽  
Robert J. Goldstone ◽  
Hannah L. Patrick ◽  
Richard A. Stabler ◽  
...  

The formation of an incapacitating biofilm onCaenorhabditis elegansbyYersinia pseudotuberculosisrepresents a tractable model for investigating the genetic basis for host-pathogen interplay during the biofilm-mediated infection of a living surface. Previously we established a role for quorum sensing (QS) and the master motility regulator, FlhDC, in biofilm formation byY. pseudotuberculosisonC. elegans. To obtain further genome-wide insights, we used transcriptomic analysis to obtain comparative information onC. elegansin the presence and absence of biofilm and on wild-typeY. pseudotuberculosisandY. pseudotuberculosisQS mutants. Infection ofC. eleganswith the wild-typeY. pseudotuberculosisresulted in the differential regulation of numerous genes, including a distinct subset of nematode C-lectin (clec) and fatty acid desaturase (fat) genes. Evaluation of the correspondingC. elegansclec-49andfat-3deletion mutants showed delayed biofilm formation and abolished biofilm formation, respectively. Transcriptomic analysis ofY. pseudotuberculosisrevealed that genes located in both of the histidine utilization (hut) operons were upregulated in both QS andflhDCmutants. In addition, mutation of the regulatory genehutCresulted in the loss of biofilm, increased expression offlhDC, and enhanced swimming motility. These data are consistent with the existence of a regulatory cascade in which the Hut pathway links QS andflhDC. This work also indicates that biofilm formation byY. pseudotuberculosisonC. elegansis an interactive process during which the initial attachment/recognition ofYersiniato/byC. elegansis followed by bacterial growth and biofilm formation.


2014 ◽  
Vol 80 (22) ◽  
pp. 7079-7087 ◽  
Author(s):  
William H. DePas ◽  
Adnan K. Syed ◽  
Margarita Sifuentes ◽  
John S. Lee ◽  
David Warshaw ◽  
...  

ABSTRACTEnteric bacteria, such asEscherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms providesE. coliwith resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protectedE. coliagainst killing by the soil-dwelling nematodeCaenorhabditis elegansand the predatory bacteriumMyxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival afterC. elegansandM. xanthuskilling compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhostEnterobacteriaceaereservoirs supported biofilm formation, we grewE. colion media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs ofE. colisupported the formation of biofilms that subsequently protectedE. coliagainst predation.


Author(s):  
Joshua D. Brycki ◽  
Jeremy R. Chen See ◽  
Gillian R. Letson ◽  
Cade S. Emlet ◽  
Lavinia V. Unverdorben ◽  
...  

Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans , including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans .


2005 ◽  
Vol 73 (11) ◽  
pp. 7236-7242 ◽  
Author(s):  
Creg Darby ◽  
Sandya L. Ananth ◽  
Li Tan ◽  
B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animal's feeding. Random screening of Y. pseudotuberculosis transposon insertion mutants with a C. elegans biofilm assay identified gmhA as a gene required for normal biofilms. gmhA encodes phosphoheptose isomerase, an enzyme required for synthesis of heptose, a conserved component of lipopolysaccharide and lipooligosaccharide. A Y. pestis gmhA mutant was constructed and was severely defective for C. elegans biofilm formation and for flea blockage but only moderately defective in an in vitro biofilm assay. These results validate use of the C. elegans biofilm system to identify genes and pathways involved in Y. pestis flea blockage.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Ainara Hernando-Ortiz ◽  
Estibaliz Mateo ◽  
Marcelo Ortega-Riveros ◽  
Iker De-la-Pinta ◽  
Guillermo Quindós ◽  
...  

ABSTRACT Although Candida albicans remains the major etiological agent of invasive candidiasis, Candida glabrata and other emerging species of Candida are increasingly isolated. This species is the second most prevalent cause of candidiasis in many regions of the world. However, clinical isolates of Candida nivariensis and Candida bracarensis can be misidentified and are underdiagnosed due to phenotypic traits shared with C. glabrata. Little is known about the two cryptic species. Therefore, pathogenesis studies are needed to understand their virulence traits and their susceptibility to antifungal drugs. The susceptibility of Caenorhabditis elegans to different Candida species makes this nematode an excellent model for assessing host-fungus interactions. We evaluated the usefulness of C. elegans as a nonconventional host model to analyze the virulence of C. glabrata, C. nivariensis, and C. bracarensis. The three species caused candidiasis, and the highest virulence of C. glabrata was confirmed. Furthermore, we determined the efficacy of current antifungal drugs against the infection caused by these species in the C. elegans model. Amphotericin B and azoles showed the highest activity against C. glabrata and C. bracarensis infections, while echinocandins were more active for treating those caused by C. nivariensis. C. elegans proved to be a useful model system for assessing the pathogenicity of these closely related species.


2015 ◽  
Vol 83 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Kivanc Bilecen ◽  
Jiunn C. N. Fong ◽  
Andrew Cheng ◽  
Christopher J. Jones ◽  
David Zamorano-Sánchez ◽  
...  

Two-component systems play important roles in the physiology of many bacterial pathogens.Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression ofvps(Vibriopolysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of thealmEFGgenes, whose products are required for glycine and diglycine modification of lipid A. We determined that CarR directly binds to the regulatory region of thealmEFGoperon. Similarly to acarRmutant, strains lackingalmE,almF, andalmGexhibited enhanced polymyxin B sensitivity. We also observed that strains lackingalmEor thealmEFGoperon have enhanced biofilm formation. Our results reveal that CarR regulates biofilm formation and antimicrobial peptide resistance inV. cholerae.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Cong Liu ◽  
Jinshui Yang ◽  
Liang Liu ◽  
Baozhen Li ◽  
Hongli Yuan ◽  
...  

ABSTRACT The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32. IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Alexandra Anderson ◽  
Yee Lian Chew ◽  
William Schafer ◽  
Rachel McMullan

ABSTRACT G protein-coupled receptors contribute to host defense across the animal kingdom, transducing many signals involved in both vertebrate and invertebrate immune responses. While it has become well established that the nematode worm Caenorhabditis elegans triggers innate immune responses following infection with numerous bacterial, fungal, and viral pathogens, the mechanisms by which C. elegans recognizes these pathogens have remained somewhat more elusive. C. elegans G protein-coupled receptors have been implicated in recognizing pathogen-associated damage and activating downstream host immune responses. Here we identify and characterize a novel G protein-coupled receptor required to regulate the C. elegans response to infection with Microbacterium nematophilum. We show that this receptor, which we designate pathogen clearance-defective receptor 1 (PCDR-1), is required for efficient pathogen clearance following infection. PCDR-1 acts upstream of multiple G proteins, including the C. elegans Gαq ortholog, EGL-30, in rectal epithelial cells to promote pathogen clearance via a novel mechanism.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Carolaing Gabaldón ◽  
Marcela Legüe ◽  
M. Fernanda Palominos ◽  
Lidia Verdugo ◽  
Florence Gutzwiller ◽  
...  

ABSTRACT The interaction and communication between bacteria and their hosts modulate many aspects of animal physiology and behavior. Dauer entry as a response to chronic exposure to pathogenic bacteria in Caenorhabditis elegans is an example of a dramatic survival response. This response is dependent on the RNA interference (RNAi) machinery, suggesting the involvement of small RNAs (sRNAs) as effectors. Interestingly, dauer formation occurs after two generations of interaction with two unrelated moderately pathogenic bacteria. Therefore, we sought to discover the identity of C. elegans RNAs involved in pathogen-induced diapause. Using transcriptomics and differential expression analysis of coding and long and small noncoding RNAs, we found that mir-243-3p (the mature form of mir-243) is the only transcript continuously upregulated in animals exposed to both Pseudomonas aeruginosa and Salmonella enterica for two generations. Phenotypic analysis of mutants showed that mir-243 is required for dauer formation under pathogenesis but not under starvation. Moreover, DAF-16, a master regulator of defensive responses in the animal and required for dauer formation was found to be necessary for mir-243 expression. This work highlights the role of a small noncoding RNA in the intergenerational defensive response against pathogenic bacteria and interkingdom communication. IMPORTANCE Persistent infection of the bacterivore nematode C. elegans with bacteria such as P. aeruginosa and S. enterica makes the worm diapause or hibernate. By doing this, the worm closes its mouth, avoiding infection. This response takes two generations to be implemented. In this work, we looked for genes expressed upon infection that could mediate the worm diapause triggered by pathogens. We identify mir-243-3p as the only transcript commonly upregulated when animals feed on P. aeruginosa and S. enterica for two consecutive generations. Moreover, we demonstrate that mir-243-3p is required for pathogen-induced dauer formation, a new function that has not been previously described for this microRNA (miRNA). We also find that the transcriptional activators DAF-16, PQM-1, and CRH-2 are necessary for the expression of mir-243 under pathogenesis. Here we establish a relationship between a small RNA and a developmental change that ensures the survival of a percentage of the progeny.


Sign in / Sign up

Export Citation Format

Share Document