scholarly journals Polyphosphate-Accumulating Bacteria: Potential Contributors to Mineral Dissolution in the Oral Cavity

2018 ◽  
Vol 84 (7) ◽  
Author(s):  
Ashley A. Breiland ◽  
Beverly E. Flood ◽  
Julia Nikrad ◽  
John Bakarich ◽  
Matthew Husman ◽  
...  

ABSTRACT Bacteria that accumulate polyphosphates have previously been shown to dynamically influence the solubility of phosphatic minerals in marine settings and wastewater. Here, we show that dental plaque, saliva, and carious lesions all contain abundant polyphosphate-accumulating bacteria. Saturation state modeling results, informed by phosphate uptake experiments using the model organism Lactobacillus rhamnosus , which is known to inhabit advanced carious lesions, suggest that polyphosphate accumulation can lead to undersaturated conditions with respect to hydroxyapatite under some oral cavity conditions. The cell densities of polyphosphate-accumulating bacteria we observed in some regions of oral biofilms are comparable to those that produce undersaturated conditions (i.e., those that thermodynamically favor mineral dissolution) in our phosphate uptake experiments with L. rhamnosus . These results suggest that the localized generation of undersaturated conditions by polyphosphate-accumulating bacteria constitutes a new potential mechanism of tooth dissolution that may augment the effects of metabolic acid production. IMPORTANCE Dental caries is a serious public health issue that can have negative impacts on overall quality of life and oral health. The role of oral bacteria in the dissolution of dental enamel and dentin that can result in carious lesions has long been solely ascribed to metabolic acid production. Here, we show that certain oral bacteria may act as a dynamic shunt for phosphate in dental biofilms via the accumulation of a polymer known as polyphosphate—potentially mediating phosphate-dependent conditions such as caries (dental decay).

2017 ◽  
Vol 83 (24) ◽  
Author(s):  
Nyssa Cullin ◽  
Sylvio Redanz ◽  
Kirsten J. Lampi ◽  
Justin Merritt ◽  
Jens Kreth

ABSTRACT The overall health of the oral cavity is dependent on proper homeostasis between health-associated bacterial colonizers and bacteria known to promote dental caries. Streptococcus sanguinis is a health-associated commensal organism, a known early colonizer of the acquired tooth pellicle, and is naturally competent. We have shown that LytF, a competence-controlled murein hydrolase, is capable of inducing the release of extracellular DNA (eDNA) from oral bacteria. Precipitated LytF and purified LytF were used as treatments against planktonic cultures and biofilms. Larger amounts of eDNA were released from cultures treated with protein samples containing LytF. Additionally, LytF could affect biofilm formation and cellular morphology. Biofilm formation was significantly decreased in the lytF-complemented strain, in which increased amounts of LytF are present. The same strain also exhibited cell morphology defects in both planktonic cultures and biofilms. Furthermore, the LytF cell morphology phenotype was reproducible in wild-type cells using purified LytF protein. In sum, our findings demonstrate that LytF can induce the release of eDNA from oral bacteria, and they suggest that, without proper regulation of LytF, cells display morphological abnormalities that contribute to biofilm malformation. In the context of the oral biofilm, LytF may play important roles as part of the competence and biofilm development programs, as well as increasing the availability of eDNA. IMPORTANCE Streptococcus sanguinis, a commensal organism in the oral cavity and one of the pioneer colonizers of the tooth surface, is associated with the overall health of the oral environment. Our laboratory showed previously that, under aerobic conditions, S. sanguinis can produce H2O2 to inhibit the growth of bacterial species that promote dental caries. This production of H2O2 by S. sanguinis also induces the release of eDNA, which is essential for proper biofilm formation. Under anaerobic conditions, S. sanguinis does not produce H2O2 but DNA is still released. Determining how S. sanguinis releases DNA is thus essential to understand biofilm formation in the oral cavity.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Xingqun Cheng ◽  
Sylvio Redanz ◽  
Nyssa Cullin ◽  
Xuedong Zhou ◽  
Xin Xu ◽  
...  

ABSTRACTCommensalStreptococcus sanguinisandStreptococcus gordoniiare pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H2O2, which is crucial for inhibiting competing biofilm members, especially the cariogenic speciesStreptococcus mutans. H2O2production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H2O2production byS. sanguinisandS. gordonii.S. sanguinisH2O2production was not found to be affected by moderate changes in environmental pH, whereasS. gordoniiH2O2production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H2O2or lactic acid production, revealed increased lactic acid levels forS. gordoniiat pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival ofS. gordoniiat low pH and seems to constitute part of the acid tolerance response ofS. gordonii. Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H2O2.IMPORTANCEOral biofilms are subject to frequent and dramatic changes in pH.S. sanguinisandS. gordoniican compete with caries- and periodontitis-associated pathogens by generating H2O2. Therefore, it is crucial to understand howS. sanguinisandS. gordoniiadapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival, while others maintain their H2O2production at a constant level. The differential control of H2O2production provides important insights into the role of environmental conditions for growth competition of the oral flora.


2013 ◽  
Vol 81 (6) ◽  
pp. 1870-1879 ◽  
Author(s):  
Kenji Kukita ◽  
Miki Kawada-Matsuo ◽  
Takahiko Oho ◽  
Mami Nagatomo ◽  
Yuichi Oogai ◽  
...  

ABSTRACTStaphylococcus aureusis a major human pathogen that can colonize the nasal cavity, skin, intestine, and oral cavity as a commensal bacterium. gp340, also known as DMBT1 (deleted in malignant brain tumors 1), is associated with epithelial differentiation and innate immunity. In the oral cavity, gp340 induces salivary aggregation with several oral bacteria and promotes bacterial adhesion to tissues such as the teeth and mucosa.S. aureusis often isolated from the oral cavity, but the mechanism underlying its persistence in the oral cavity remains unclear. In this study, we investigated the interaction betweenS. aureusand gp340 and found thatS. aureusinteracts with saliva- and gp340-coated resin. We then identified theS. aureusfactor(s) responsible for binding to gp340. The cell surface protein SasA, which is rich in basic amino acids (BR domain) at the N terminus, was responsible for binding to gp340. Inactivation of thesasAgene resulted in a significant decrease inS. aureusbinding to gp340-coated resin. Also, recombinant SasA protein (rSasA) showed binding affinity to gp340, which was inhibited by the addition ofN-acetylneuraminic acid. Surface plasmon resonance analysis showed that rSasA significantly bound to the NeuAcα(2-3)Galβ(1-4)GlcNAc structure. These results indicate that SasA is responsible for binding to gp340 via theN-acetylneuraminic acid moiety.


2020 ◽  
Vol 203 (2) ◽  
pp. e00293-20
Author(s):  
Matthew E. Turner ◽  
Khanh Huynh ◽  
Ronan K. Carroll ◽  
Sang-Joon Ahn ◽  
Kelly C. Rice

ABSTRACTStreptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the “feast or famine” environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2. The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans. Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.


2014 ◽  
Vol 80 (20) ◽  
pp. 6480-6489 ◽  
Author(s):  
Valeria Soro ◽  
Lindsay C. Dutton ◽  
Susan V. Sprague ◽  
Angela H. Nobbs ◽  
Anthony J. Ireland ◽  
...  

ABSTRACTThe diversity of bacterial species in the human oral cavity is well recognized, but a high proportion of them are presently uncultivable. Candidate division TM7 bacteria are almost always detected in metagenomic studies but have not yet been cultivated. In this paper, we identified candidate division TM7 bacterial phylotypes in mature plaque samples from around orthodontic bonds in subjects undergoing orthodontic treatment. Successive rounds of enrichment in laboratory media led to the isolation of a pure culture of one of these candidate division TM7 phylotypes. The bacteria formed filaments of 20 to 200 μm in length within agar plate colonies and in monospecies biofilms on salivary pellicle and exhibited some unusual morphological characteristics by transmission electron microscopy, including a trilaminated cell surface layer and dense cytoplasmic deposits. Proteomic analyses of cell wall protein extracts identified abundant polypeptides predicted from the TM7 partial genomic sequence. Pleiomorphic phenotypes were observed when the candidate division TM7 bacterium was grown in dual-species biofilms with representatives of six different oral bacterial genera. The TM7 bacterium formed long filaments in dual-species biofilm communities withActinomyces orisorFusobacterium nucleatum. However, the TM7 isolate grew as short rods or cocci in dual-species biofilms withPorphyromonas gingivalis,Prevotella intermedia,Parvimonas micra, orStreptococcus gordonii, forming notably robust biofilms with the latter two species. The ability to cultivate TM7 axenically should majorly advance understanding of the physiology, genetics, and virulence properties of this novel candidate division oral bacterium.


2012 ◽  
Vol 78 (16) ◽  
pp. 5638-5645 ◽  
Author(s):  
Yoon-Suk Kang ◽  
Brian Bothner ◽  
Christopher Rensing ◽  
Timothy R. McDermott

ABSTRACTIn this study with the model organismAgrobacterium tumefaciens, we used a combination oflacZgene fusions, reverse transcriptase PCR (RT-PCR), and deletion and insertional inactivation mutations to show unambiguously that the alternative sigma factor RpoN participates in the regulation of AsIIIoxidation. A deletion mutation that removed the RpoN binding site from theaioBApromoter and anaacC3(gentamicin resistance) cassette insertional inactivation of therpoNcoding region eliminatedaioBAexpression and AsIIIoxidation, althoughrpoNexpression was not related to cell exposure to AsIII. Putative RpoN binding sites were identified throughout the genome and, as examples, included promoters foraioB,phoB1,pstS1,dctA,glnA,glnB, andflgBthat were examined by using qualitative RT-PCR andlacZreporter fusions to assess the relative contribution of RpoN to their transcription. The expressions ofaioBanddctAin the wild-type strain were considerably enhanced in cells exposed to AsIII, and both genes were silent in therpoN::aacC3mutant regardless of AsIII. The expression level ofglnAwas not influenced by AsIIIbut was reduced (but not silent) in therpoN::aacC3mutant and further reduced in the mutant under N starvation conditions. TherpoN::aacC3mutation had no obvious effect on the expression ofglnB,pstS1,phoB1, orflgB. These experiments provide definitive evidence to document the requirement of RpoN for AsIIIoxidation but also illustrate that the presence of a consensus RpoN binding site does not necessarily link the associated gene with regulation by AsIIIor by this sigma factor.


2014 ◽  
Vol 80 (8) ◽  
pp. 2410-2416 ◽  
Author(s):  
Areen Banerjee ◽  
Ching Leang ◽  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACTThe development of tools for genetic manipulation ofClostridium ljungdahliihas increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox forC. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported forClostridium perfringens, was investigated. The plasmid pAH2, originally developed forC. perfringenswith agusAreporter gene, functioned as an effective lactose-inducible system inC. ljungdahlii. Lactose induction ofC. ljungdahliicontaining pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression ofadhE130-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression ofadhE1in a strain in whichadhE1and theadhE1homologadhE2had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression ofadhE2similarly failed to restore ethanol production, suggesting thatadhE1is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.


2014 ◽  
Vol 80 (15) ◽  
pp. 4599-4605 ◽  
Author(s):  
Amelia-Elena Rotaru ◽  
Pravin Malla Shrestha ◽  
Fanghua Liu ◽  
Beatrice Markovaite ◽  
Shanshan Chen ◽  
...  

ABSTRACTDirect interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability ofMethanosarcina barkerito participate in DIET was evaluated in coculture withGeobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficientG. metallireducensstrain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficientG. metallireducensisolates to share electrons withM. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. WhenM. barkeriwas grown in coculture with the H2-producingPelobacter carbinolicus, incapable of DIET,M. barkeriutilized H2as an electron donor but metabolized little of the acetate thatP. carbinolicusproduced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism.P. carbinolicus-M. barkericocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2transfer.M. barkeriis the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2or electrons derived from DIET for CO2reduction. Furthermore,M. barkeriis genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 458-463 ◽  
Author(s):  
Sonia R. Vartoukian ◽  
Julia Downes ◽  
Richard M. Palmer ◽  
William G. Wade

SGP1T, a strain belonging to a lineage of the phylum Synergistetes with no previously cultivated representatives was subjected to a comprehensive range of phenotypic and genotypic tests. For good growth the strain was dependent on co-culture with, or extracts from, selected other oral bacteria. Cells of strain SGP1T were asaccharolytic and major amounts of acetic acid and moderate amounts of propionic acid were produced as end products of metabolism in peptone-yeast extract-glucose broth supplemented with a filtered cell sonicate of Fusobacterium nucleatum subsp. nucleatum ATCC 25586T (25 %, v/v). Hydrogen sulphide was produced and gelatin was weakly hydrolysed. The major cellular fatty acids were C14 : 0, C18 : 0 and C16 : 0. The DNA G+C content of strain SGP1T was 63 mol%. Phylogenetic analysis of the full-length 16S rRNA gene showed that strain SGP1T represented a novel group within the phylum Synergistetes . A novel species in a new genus, Fretibacterium fastidiosum gen. nov., sp. nov., is proposed. The type strain of Fretibacterium fastidiosum is SGP1T ( = DSM 25557T = JCM 16858T).


2013 ◽  
Vol 12 (5) ◽  
pp. 684-696 ◽  
Author(s):  
Alberto Rivetta ◽  
Kenneth E. Allen ◽  
Carolyn W. Slayman ◽  
Clifford L. Slayman

ABSTRACTFungi, plants, and bacteria accumulate potassium via two distinct molecular machines not directly coupled to ATP hydrolysis. The first, designated TRK, HKT, or KTR, has eight transmembrane helices and is folded like known potassium channels, while the second, designated HAK, KT, or KUP, has 12 transmembrane helices and resembles MFS class proteins. One of each type functions in the model organismNeurospora crassa, where both are readily accessible for biochemical, genetic, and electrophysiological characterization. We have now determined the operating balance between Trk1p and Hak1p under several important conditions, including potassium limitation and carbon starvation. Growth measurements, epitope tagging, and quantitative Western blotting have shown the geneHAK1to be much more highly regulated than isTRK1. This conclusion follows from three experimental results: (i) Trk1p is expressed constitutively but at low levels, and it is barely sensitive to extracellular [K+] and/or the coexpression ofHAK1; (ii) Hak1p is abundant but is markedly depressed by elevated extracellular concentrations of K+and by coexpression ofTRK1; and (iii) Carbon starvation slowly enhances Hak1p expression and depresses Trk1p expression, yielding steady-state Hak1p:Trk1p ratios of ∼500:1,viz., 10- to 50-fold larger than that in K+- and carbon-replete cells. Additionally, it appears that both potassium transporters can adjust kinetically to sustained low-K+stress by means of progressively increasing transporter affinity for extracellular K+. The underlying observations are (iv) that K+influx via Trk1p remains nearly constant at ∼9 mM/h when extracellular K+is progressively depleted below 0.05 mM and (v) that K+influx via Hak1p remains at ∼3 mM/h when extracellular K+is depleted below 0.1 mM.


Sign in / Sign up

Export Citation Format

Share Document