scholarly journals Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells

2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Prabhat K. Talukdar ◽  
Pathima Udompijitkul ◽  
Ashfaque Hossain ◽  
Mahfuzur R. Sarker

ABSTRACT Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed.

mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Menglin Ma ◽  
Jorge Vidal ◽  
Juliann Saputo ◽  
Bruce A. McClane ◽  
Francisco Uzal

ABSTRACT Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells. IMPORTANCE Clostridium perfringens is an important human and veterinary pathogen. C. perfringens vegetative cells cause both histotoxic infections, e.g., traumatic gas gangrene, and infections originating when this bacterium grows in the intestines. The VirS/VirR two-component regulatory system has been shown to control the pathogenicity of C. perfringens type A strains in a mouse gas gangrene model, but there is no understanding of pathogenicity regulation when C. perfringens vegetative cells cause disease originating in the complex intestinal environment. The current study establishes that VirS/VirR controls vegetative cell pathogenicity when C. perfringens type C isolates cause hemorrhagic necrotic enteritis and lethal enterotoxemia (i.e., toxin absorption from the intestines into the circulation, allowing targeting of internal organs). This effect involves VirS/VirR-mediated regulation of beta toxin production in vivo. Therefore, VirS/VirR is the first identified global in vivo regulator controlling the ability of C. perfringens vegetative cells to cause gas gangrene and, at least some, intestinal infections.


2016 ◽  
Vol 60 (4) ◽  
pp. 2567-2571 ◽  
Author(s):  
Daniel A. Tadesse ◽  
Aparna Singh ◽  
Shaohua Zhao ◽  
Mary Bartholomew ◽  
Niketta Womack ◽  
...  

ABSTRACTWe conducted a retrospective study of 2,149 clinicalSalmonellastrains to help document the historical emergence of antimicrobial resistance. There were significant increases in resistance to older drugs, including ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline, which were most common inSalmonella entericaserotype Typhimurium. An increase in multidrug resistance was observed for each decade since the 1950s. These data help show howSalmonellaevolved over the past 6 decades, after the introduction of new antimicrobial agents.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2020 ◽  
Vol 13 (2) ◽  
pp. 195-210 ◽  
Author(s):  
Avanish Singh Chauhan ◽  
Gaurav Kumar Badhotiya ◽  
Gunjan Soni ◽  
Prem Kumari

Purpose Because of the increased global competition and the need for environment consciousness, organisations have started focusing on incorporating sustainability dimensions into suppler selection criteria. In the past decade, sustainable supplier selection has received much attention from researchers as well as industry practitioners. The purpose of this paper is to identify various sustainable supplier selection criteria (SSSC) and underlying interdependencies among prominent selection criteria to develop a framework for sustainability dimensions. Design/methodology/approach The sustainable criteria for supplier selection were established through comprehensive literature review. An interpretive structural modelling (ISM) approach is used to investigate the interrelationships among these criteria. Findings A total of 21 SSSC under 3 dimensions (social, environmental and economic) are established. Ten criteria related to quality, capability, flexibility, waste management, pollution prevention, local community, employment practice, labour, etc. are exhibiting strong driving as well as dependence power, as demonstrated through ISM and matriced’ impacts croises-multiplication applique’ and classement (MICMAC) analysis. The findings show that delivery/service, eco design and rights of stakeholders are the “key” criteria having a high-driving and low-dependence power. These criteria require high attention from managers, while other criteria having low-driving and high-dependence power require secondary actions. Research limitations/implications The inter-relations for the development of ISM model and MICMAC analysis were obtained through the opinion of industry experts and academicians, which may tend to be subjectively biased. Further exploration is proposed to statistically validate the developed interdependency model. Practical implications This paper might act as a reference for the supplier development managers of organisations by providing an appraisal of various SSSC based on their interdependencies. Originality/value This study contributes to the knowledge base by proposing a framework of the interrelationships of the SSSC and also provides an additional perspective for managing these criteria based on ISM.


2021 ◽  
Vol 24 (3) ◽  
pp. 30-34
Author(s):  
Rishi Shukla ◽  
Neev Kiran ◽  
Rui Wang ◽  
Jeremy Gummeson ◽  
Sunghoon Ivan Lee

Over the past few decades, we have witnessed tremendous advancements in semiconductor and MEMS technologies, leading to the proliferation of ultra-miniaturized and ultra-low-power (in micro-watt ranges) wearable devices for wellness and healthcare [1]. Most of these wearable sensors are battery powered for their operation. The use of an on-device battery as the primary energy source poses a number of challenges that serve as the key barrier to the development of novel wearable applications and the widespread use of numerous, seamless wearable sensors [5].


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 245
Author(s):  
Hiroshi Sekiya ◽  
Maho Okada ◽  
Eiji Tamai ◽  
Toshi Shimamoto ◽  
Tadashi Shimamoto ◽  
...  

Clostridium perfringens is an often-harmful intestinal bacterium that causes various diseases ranging from food poisoning to life-threatening fulminant disease. Potential treatments include phage-derived endolysins, a promising family of alternative antimicrobial agents. We surveyed the genome of the C. perfringens st13 strain and identified an endolysin gene, psa, in the phage remnant region. Psa has an N-terminal catalytic domain that is homologous to the amidase_2 domain, and a C-terminal domain of unknown function. psa and gene derivatives encoding various Psa subdomains were cloned and expressed in Escherichia coli as N-terminal histidine-tagged proteins. Purified His-tagged full-length Psa protein (Psa-his) showed C. perfringens-specific lytic activity in turbidity reduction assays. In addition, we demonstrated that the uncharacterized C-terminal domain has cell wall-binding activity. Furthermore, cell wall-binding measurements showed that Psa binding was highly specific to C. perfringens. These results indicated that Psa is an amidase endolysin that specifically lyses C. perfringens; the enzyme’s specificity is highly dependent on the binding of the C-terminal domain. Moreover, Psa was shown to have a synergistic effect with another C. perfringens-specific endolysin, Psm, which is a muramidase that cleaves peptidoglycan at a site distinct from that targeted by Psa. The combination of Psa and Psm may be effective in the treatment and prevention of C. perfringens infections.


2020 ◽  
Vol 32 (5) ◽  
pp. 631-643
Author(s):  
Sedat Özer ◽  
Yaşar Erayman Yüksel ◽  
Yasemin Korkmaz

PurposeDesign of bedding textiles that contact the human body affects the sleep quality. Bedding textiles contribute to comfort sense during the sleep duration, in addition to ambient and bed microclimate. The purpose of this study is to evaluate the effects of different layer properties on the compression recovery and thermal characteristics of multilayer bedding textiles.Design/methodology/approachIn this study, woven and knitted multilayer bedding textiles were manufactured from fabric, fiber, sponge and interlining, respectively. Different sponge thickness, fiber and interlining weight were used in the layers of samples. Later, the pilling resistance, compression and recovery, air permeability and thermal conductivity of multilayer bedding textiles were investigated.FindingsThe results indicated that samples with the higher layer weight and thickness provide better compression recovery and lower air permeability properties. It was also found that knitted surfaces show the higher air permeability than the woven surfaces depending on the fabric porosity. Layer properties have insignificant effect on the thermal conductivity values.Originality/valueWhile researchers mostly focus on thermal comfort properties of garments, there are limited studies about comfort properties of bedding textiles in the literature. Furthermore, compression recovery properties of bedding textiles have also a great importance in terms of comfort. Originality of this study is that these properties were analyzed together.


2012 ◽  
Vol 56 (7) ◽  
pp. 3943-3949 ◽  
Author(s):  
Chun-Hsing Liao ◽  
Wen-Chien Ko ◽  
Jang-Jih Lu ◽  
Po-Ren Hsueh

ABSTRACTA total of 403 nonduplicate isolates ofClostridium difficilewere collected at three major teaching hospitals representing northern, central, and southern Taiwan from January 2005 to December 2010. Of these 403 isolates, 170 (42.2%) were presumed to be nontoxigenic due to the absence of genes for toxins A or B or binary toxin. The remaining 233 (57.8%) isolates carried toxin A and B genes, and 39 (16.7%) of these also had binary toxin genes. The MIC90of all isolates for fidaxomicin and rifaximin was 0.5 μg/ml (range, ≤0.015 to 0.5 μg/ml) and >128 μg/ml (range, ≤0.015 to >128 μg/ml), respectively. All isolates were susceptible to metronidazole (MIC90of 0.5 μg/ml; range, ≤0.03 to 4 μg/ml). Two isolates had reduced susceptibility to vancomycin (MICs, 4 μg/ml). Only 13.6% of isolates were susceptible to clindamycin (MIC of ≤2 μg/ml). Nonsusceptibility to moxifloxacin (n= 81, 20.1%) was accompanied by single or multiple mutations ingyrAandgyrBgenes in all but eight moxifloxacin-nonsusceptible isolates. Two previously unreportedgyrBmutations might independently confer resistance (MIC, 16 μg/ml), Ser416 to Ala and Glu466 to Lys. Moxifloxacin-resistant isolates were cross-resistant to ciprofloxacin and levofloxacin, but some moxifloxacin-nonsusceptible isolates remained susceptible to gemifloxacin or nemonoxacin at 0.5 μg/ml. This study found the diversity of toxigenic and nontoxigenic strains ofC. difficilein the health care setting in Taiwan. All isolates tested were susceptible to metronidazole and vancomycin. Fidaxomicin exhibited potentin vitroactivity against all isolates tested, while the more than 10% of Taiwanese isolates with rifaximin MICs of ≥128 μg/ml raises concerns.


2018 ◽  
Vol 19 (2) ◽  
pp. 19-23
Author(s):  
Brian Rubin ◽  
Adam Pollet

Purpose The purpose of this paper is to analyze the Financial Industry Regulatory Authority’s (FINRA) 2017 disciplinary actions, the issues that resulted in the most significant fines and restitution and the emerging enforcement trends from 2017 and beyond. Design/methodology/approach The approach of this paper discusses the disciplinary actions in 2017 and prior years, details the top 2017 enforcement issues measured by total fines assessed, including anti-money laundering, trade reporting, electronic communications, books and records, research analysts and research reports, and explains current enforcement trends, including restitution, suitability cases and technological issues. Findings In 2017, restitution more than doubled from the prior year, resulting in the fourth highest total sanctions (fines combined with restitution and disgorgement) assessed by FINRA over the past 10 years. Practical implications Firms and their representatives should heed the trends in both the substantial restitution FINRA is ordering and the related enforcement issues in the cases FINRA has brought. Originality/value This paper provides expert analysis and guidance from experienced securities enforcement lawyers.


1979 ◽  
Vol 42 (11) ◽  
pp. 872-876 ◽  
Author(s):  
J. RITTER ◽  
J. O'LEARY ◽  
B. E. LANGLOIS

Staphylococcus aureus, Clostridium perfringens. Salmonella choleraesuis, and Salmonella typhimurium were inoculated (108 cells or spores) into two slow cookers containing green bean casserole, baked navy beans, chicken cacciatore, barbecued ribs or pork pot roast, and their fate determined after cooking. Heating patterns also were determined at three positions inside the two cookers. None of the foods cooked in either of the slow cookers contained detectable levels of S. aureus or salmonellae. The similarity between C. perfringens vegetative and spore counts indicate that only spores were present in the cooked foods. Except for the green bean casserole cooked using a low temperature setting, cooking resulted in a 0.44–1.67 and 0.36–1.54 log count reduction, respectively, of vegetative cells and spores of C. perfringens. Counts of vegetative cells and spores after cooking the green bean casserole were approximately .18 and .30 log counts higher than the uncooked counts. The mean times for the coldest areas in Cooker A to reach 50 C were 2.57 and 0.97 h, respectively, for the low (80 watts) and high (160 watts) temperature settings. The mean times for the coldest areas in Cooker B (removable liner) to reach 50 C were 2.35 and 0.52 h for the low (130 watts) and high (260 watts) temperature settings, respectively. Results suggest that when the recommended quantities of ingredients are used and the proper cooking procedure followed, foods prepared in the slow cookers studied do not present a health hazard.


Sign in / Sign up

Export Citation Format

Share Document