scholarly journals De NovoAmino Acid Biosynthesis Contributes to Salmonella enterica Growth in Alfalfa Seedling Exudates

2014 ◽  
Vol 81 (3) ◽  
pp. 861-873 ◽  
Author(s):  
Grace Kwan ◽  
Tippapha Pisithkul ◽  
Daniel Amador-Noguez ◽  
Jeri Barak

ABSTRACTSalmonella entericais a member of the plant microbiome. Growth ofS. entericain sprouting-seed exudates is rapid; however, the active metabolic networks essential in this environment are unknown. To examine the metabolic requirements ofS. entericaduring growth in sprouting-seed exudates, we inoculated alfalfa seeds and identified 305S. entericaproteins extracted 24 h postinoculation from planktonic cells. Over half the proteins had known metabolic functions, and they are involved in over one-quarter of the known metabolic reactions. Ion and metabolite transport accounted for the majority of detected reactions. Proteins involved in amino acid transport and metabolism were highly represented, suggesting that amino acid metabolic networks may be important forS. entericagrowth in association with roots. Amino acid auxotroph growth phenotypes agreed with the proteomic data; auxotrophs in amino acid-biosynthetic pathways that were detected in our screen developed growth defects by 48 h. When the perceived sufficiency of each amino acid was expressed as a ratio of the calculated biomass requirement to the available concentration and compared to growth of each amino acid auxotroph, a correlation between nutrient availability and bacterial growth was found. Furthermore, glutamate transport acted as a fitness factor duringS. entericagrowth in association with roots. Collectively, these data suggest thatS. entericametabolism is robust in the germinating-alfalfa environment; that single-amino-acid metabolic pathways are important but not essential; and that targeting central metabolic networks, rather than dedicated pathways, may be necessary to achieve dramatic impacts on bacterial growth.

2016 ◽  
Vol 198 (24) ◽  
pp. 3287-3295 ◽  
Author(s):  
Lauren R. Walling ◽  
J. Scott Butler

ABSTRACT Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea, where they play a pivotal role in the establishment and maintenance of dormancy. Under normal growth conditions, the antitoxin neutralizes the toxin. However, under conditions of stress, such as nutrient starvation or antibiotic treatment, cellular proteases degrade the antitoxin, and the toxin functions to arrest bacterial growth. We characterized the specificity determinants of the interactions between VapB antitoxins and VapC toxins from nontypeable Haemophilus influenzae (NTHi) in an effort to gain a better understanding of how antitoxins control toxin activity and bacterial persistence. We studied truncated and full-length antitoxins with single amino acid mutations in the toxin-binding domain. Coexpressing the toxin and antitoxin in Escherichia coli and measuring bacterial growth by dilution plating assayed the ability of the mutant antitoxins to neutralize the toxin. Our results identified two single amino acid residues (W48 and F52) in the C-terminal region of the VapB2 antitoxin necessary for its ability to neutralize its cognate VapC2 toxin. Additionally, we attempted to alter the specificity of VapB1 by making a mutation that would allow it to neutralize its noncognate toxin. A mutation in VapB1 to contain the tryptophan residue identified herein as important in the VapB2-VapC2 interaction resulted in a VapB1 mutant (the T47W mutant) that binds to and neutralizes both its cognate VapC1 and noncognate VapC2 toxins. This represents the first example of a single mutation causing relaxed specificity in a type II antitoxin. IMPORTANCE Toxin-antitoxin systems are of particular concern in pathogenic organisms, such as nontypeable Haemophilus influenzae , as they can elicit dormancy and persistence, leading to chronic infections and failure of antibiotic treatment. Despite the importance of the TA interaction, the specificity determinants for VapB-VapC complex formation remain uncharacterized. Thus, our understanding of how antitoxins control toxin-induced dormancy and bacterial persistence requires thorough investigation of antitoxin specificity for its cognate toxin. This study characterizes the crucial residues of the VapB2 antitoxin from NTHi necessary for its interaction with VapC2 and provides the first example of a single amino acid change altering the toxin specificity of an antitoxin.


2012 ◽  
Vol 11 (10) ◽  
pp. 1289-1299 ◽  
Author(s):  
Stephanie A. Flowers ◽  
Katherine S. Barker ◽  
Elizabeth L. Berkow ◽  
Geoffrey Toner ◽  
Sean G. Chadwick ◽  
...  

ABSTRACTInCandida albicans, Upc2 is a zinc-cluster transcription factor that targets genes, including those of the ergosterol biosynthesis pathway. To date, three documentedUPC2gain-of-function (GOF) mutations have been recovered from fluconazole-resistant clinical isolates that contribute to an increase inERG11expression and decreased fluconazole susceptibility. In a group of 63 isolates with reduced susceptibility to fluconazole, we found that 47 overexpressedERG11by at least 2-fold over the average expression levels in 3 unrelated fluconazole-susceptible strains. Of those 47 isolates, 29 contained a mutation inUPC2, whereas the remaining 18 isolates did not. Among the isolates containing mutations inUPC2, we recovered eight distinct mutations resulting in putative single amino acid substitutions: G648D, G648S, A643T, A643V, Y642F, G304R, A646V, and W478C. Seven of these resulted in increasedERG11expression, increased cellular ergosterol, and decreased susceptibility to fluconazole compared to the results for the wild-type strain. Genome-wide transcriptional analysis was performed for the four strongest Upc2 amino acid substitutions (A643V, G648D, G648S, and Y642F). Genes commonly upregulated by all four mutations included those involved in ergosterol biosynthesis, in oxidoreductase activity, the major facilitator efflux pump encoded by theMDR1gene, and the uncharacterized ATP binding cassette transporterCDR11. These findings demonstrate that gain-of-function mutations inUPC2are more prevalent among clinical isolates than previously thought and make a significant contribution to azole antifungal resistance, but the findings do not account forERG11overexpression in all such isolates ofC. albicans.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Melissa Loddeke ◽  
Barbara Schneider ◽  
Tamiko Oguri ◽  
Iti Mehta ◽  
Zhenyu Xuan ◽  
...  

ABSTRACT Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR. Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis. IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.


2016 ◽  
Vol 199 (4) ◽  
Author(s):  
Rebecca Johnson ◽  
Alexander Byrne ◽  
Cedric N. Berger ◽  
Elizabeth Klemm ◽  
Valerie F. Crepin ◽  
...  

ABSTRACT Strains of the various Salmonella enterica serovars cause gastroenteritis or typhoid fever in humans, with virulence depending on the action of two type III secretion systems (Salmonella pathogenicity island 1 [SPI-1] and SPI-2). SptP is a Salmonella SPI-1 effector, involved in mediating recovery of the host cytoskeleton postinfection. SptP requires a chaperone, SicP, for stability and secretion. SptP has 94% identity between S. enterica serovar Typhimurium and S. Typhi; direct comparison of the protein sequences revealed that S. Typhi SptP has numerous amino acid changes within its chaperone-binding domain. Subsequent comparison of ΔsptP S. Typhi and S. Typhimurium strains demonstrated that, unlike SptP in S. Typhimurium, SptP in S. Typhi was not involved in invasion or cytoskeletal recovery postinfection. Investigation of whether the observed amino acid changes within SptP of S. Typhi affected its function revealed that S. Typhi SptP was unable to complement S. Typhimurium ΔsptP due to an absence of secretion. We further demonstrated that while S. Typhimurium SptP is stable intracellularly within S. Typhi, S. Typhi SptP is unstable, although stability could be recovered following replacement of the chaperone-binding domain with that of S. Typhimurium. Direct assessment of the strength of the interaction between SptP and SicP of both serovars via bacterial two-hybrid analysis demonstrated that S. Typhi SptP has a significantly weaker interaction with SicP than the equivalent proteins in S. Typhimurium. Taken together, our results suggest that changes within the chaperone-binding domain of SptP in S. Typhi hinder binding to its chaperone, resulting in instability, preventing translocation, and therefore restricting the intracellular activity of this effector. IMPORTANCE Studies investigating Salmonella pathogenesis typically rely on Salmonella Typhimurium, even though Salmonella Typhi causes the more severe disease in humans. As such, an understanding of S. Typhi pathogenesis is lacking. Differences within the type III secretion system effector SptP between typhoidal and nontyphoidal serovars led us to characterize this effector within S. Typhi. Our results suggest that SptP is not translocated from typhoidal serovars, even though the loss of sptP results in virulence defects in S. Typhimurium. Although SptP is just one effector, our results exemplify that the behavior of these serovars is significantly different and genes identified to be important for S. Typhimurium virulence may not translate to S. Typhi.


2013 ◽  
Vol 58 (1) ◽  
pp. 221-228 ◽  
Author(s):  
Sophie Guénard ◽  
Cédric Muller ◽  
Laura Monlezun ◽  
Philippe Benas ◽  
Isabelle Broutin ◽  
...  

ABSTRACTConstitutive overproduction of the pump MexXY-OprM is recognized as a major cause of resistance to aminoglycosides, fluoroquinolones, and zwitterionic cephalosporins inPseudomonas aeruginosa. In this study, 57 clonally unrelated strains recovered from non-cystic fibrosis patients were analyzed to characterize the mutations resulting in upregulation of themexXYoperon. Forty-four (77.2%) of the strains, classified asagrZmutants were found to harbor mutations inactivating the local repressor gene (mexZ) of themexXYoperon (n= 33; 57.9%) or introducing amino acid substitutions in its product, MexZ (n= 11; 19.3%). These sequence variations, which mapped in the dimerization domain, the DNA binding domain, or the rest of the MexZ structure, mostly affected amino acid positions conserved in TetR-like regulators. The 13 remaining MexXY-OprM strains (22.8%) contained intactmexZgenes encoding wild-type MexZ proteins. Eight (14.0%) of these isolates, classified asagrW1mutants, overexpressed the gene PA5471, which codes for the MexZ antirepressor AmrZ, with 5 strains exhibiting growth defects at 37°C and 44°C, consistent with mutations impairing ribosome activity. Interestingly, oneagrW1mutant appeared to harbor a 7-bp deletion in the coding sequence of the leader peptide, PA5471.1, involved in ribosome-dependent, translational attenuation of PA5471 expression. Finally, DNA sequencing and complementation experiments revealed that 5 (8.8%) strains, classified asagrW2mutants, harbored single amino acid variations in the sensor histidine kinase of ParRS, a two-component system known to positively controlmexXYexpression. Collectively, these results demonstrate that clinical strains ofP. aeruginosaexploit different regulatory circuitries to mutationally overproduce the MexXY-OprM pump and become multidrug resistant, which accounts for the high prevalence of MexXY-OprM mutants in the clinical setting.


2018 ◽  
Vol 86 (11) ◽  
Author(s):  
Rebecca A. Keogh ◽  
Rachel L. Zapf ◽  
Richard E. Wiemels ◽  
Marcus A. Wittekind ◽  
Ronan K. Carroll

ABSTRACTTheStaphylococcus aureuscyclophilin PpiB is an intracellular peptidyl prolylcis/transisomerase (PPIase) that has previously been shown to contribute to secreted nuclease and hemolytic activity. In this study, we investigated the contribution of PpiB toS. aureusvirulence. Using a murine abscess model of infection, we demonstrated that appiBmutant is attenuated for virulence. We went on to investigate the mechanism through which PpiB protein contributes to virulence, in particular the contribution of PpiB PPIase activity. We determined the amino acid residues that are important for PpiB PPIase activity and showed that a single amino acid substitution (F64A) completely abrogates PPIase activity. Using purified PpiB F64A proteinin vitro, we showed that PPIase activity only partially contributes to Nuc refolding and that PpiB also possesses PPIase-independent activity. Using allelic exchange, we introduced the F64A substitution onto theS. aureuschromosome, generating a strain that produces enzymatically inactive PpiB. Analysis of the PpiB F64A strain revealed that PPIase activity is not required for hemolysis of human blood or virulence in a mouse. Together, these results demonstrate that PpiB contributes toS. aureusvirulence via a mechanism unrelated to prolyl isomerase activity.


2015 ◽  
Vol 59 (7) ◽  
pp. 3710-3717 ◽  
Author(s):  
Krisztina M. Papp-Wallace ◽  
Marisa L. Winkler ◽  
Magdalena A. Taracila ◽  
Robert A. Bonomo

ABSTRACTKPC-2 is the most prevalent class A carbapenemase in the world. Previously, KPC-2 was shown to hydrolyze the β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam. In addition, substitutions at amino acid position R220 in the KPC-2 β-lactamase increased resistance to clavulanic acid. A novel bridged diazabicyclooctane (DBO) non-β-lactam β-lactamase inhibitor, avibactam, was shown to inactivate the KPC-2 β-lactamase. To better understand the mechanistic basis for inhibition of KPC-2 by avibactam, we tested the potency of ampicillin-avibactam and ceftazidime-avibactam against engineered variants of the KPC-2 β-lactamase that possessed single amino acid substitutions at important sites (i.e., Ambler positions 69, 130, 234, 220, and 276) that were previously shown to confer inhibitor resistance in TEM and SHV β-lactamases. To this end, we performed susceptibility testing, biochemical assays, and molecular modeling.Escherichia coliDH10B carrying KPC-2 β-lactamase variants with the substitutions S130G, K234R, and R220M demonstrated elevated MICs for only the ampicillin-avibactam combinations (e.g., 512, 64, and 32 mg/liter, respectively, versus the MICs for wild-type KPC-2 at 2 to 8 mg/liter). Steady-state kinetics revealed that the S130G variant of KPC-2 resisted inactivation by avibactam; thek2/Kratio was significantly lowered 4 logs for the S130G variant from the ratio for the wild-type enzyme (21,580 M−1s−1to 1.2 M−1s−1). Molecular modeling and molecular dynamics simulations suggested that the mobility of K73 and its ability to activate S70 (i.e., function as a general base) may be impaired in the S130G variant of KPC-2, thereby explaining the slowed acylation. Moreover, we also advance the idea that the protonation of the sulfate nitrogen of avibactam may be slowed in the S130G variant, as S130 is the likely proton donor and another residue, possibly K234, must compensate. Our findings show that residues S130 as well as K234 and R220 contribute significantly to the mechanism of avibactam inactivation of KPC-2. Fortunately, the emergence of S130G, K234R, and R220M variants of KPC in the clinic should not result in failure of ceftazidime-avibactam, as the ceftazidime partner is potent againstE. coliDH10B strains possessing all of these variants.


2018 ◽  
Vol 200 (9) ◽  
pp. e00050-18 ◽  
Author(s):  
Hana S. Fukuto ◽  
Viveka Vadyvaloo ◽  
Joseph B. McPhee ◽  
Hendrik N. Poinar ◽  
Edward C. Holmes ◽  
...  

ABSTRACTYersinia pestis, the causative agent of plague, evolved from the closely related pathogenYersinia pseudotuberculosis. During its emergence,Y. pestisis believed to have acquired its unique pathogenic characteristics through numerous gene gains/losses, genomic rearrangements, and single nucleotide polymorphism (SNP) changes. One such SNP creates a single amino acid variation in the DNA binding domain of PhoP, the response regulator in the PhoP/PhoQ two-component system.Y. pseudotuberculosisand the basal human-avirulent strains ofY. pestisharbor glycines at position 215 of PhoP, whereas the modern human-virulent strains (e.g., KIM and CO92) harbor serines at this residue. Since PhoP plays multiple roles in the adaptation ofY. pestisto stressful host conditions, we tested whether this amino acid substitution affects PhoP activity or the ability ofY. pestisto survive in host environments. Compared to the parental KIM6+ strain carrying the modern allele ofphoP(phoP-S215), a derivative carrying the basal allele (phoP-G215) exhibited slightly defective growth under a low-Mg2+condition and decreased transcription of a PhoP target gene,ugd, as well as an ∼8-fold increase in the susceptibility to the antimicrobial peptide polymyxin B. ThephoP-G215strain showed no apparent defect in flea colonization, although aphoP-null mutant showed decreased flea infectivity in competition experiments. Our results suggest that the amino acid variation at position 215 of PhoP causes subtle changes in the PhoP activity and raise the possibility that the change in this residue have contributed to the evolution of increased virulence inY. pestis.IMPORTANCEY. pestisacquired a single nucleotide polymorphism (SNP) inphoPwhen the highly human-virulent strains diverged from less virulent basal strains, resulting in an amino acid substitution in the DNA binding domain of the PhoP response regulator. We show thatY. pestiscarrying the modernphoPallele has an increased ability to induce the PhoP-regulatedugdgene and resist antimicrobial peptides compared to an isogenic strain carrying the basal allele. Given the important roles PhoP plays in host adaptation, the results raise an intriguing possibility that this amino acid substitution contributed to the evolution of increased virulence inY. pestis. Additionally, we present the first evidence thatphoPconfers a survival fitness advantage toY. pestisinside the flea midgut.


2012 ◽  
Vol 80 (12) ◽  
pp. 4291-4297 ◽  
Author(s):  
Younho Choi ◽  
Jeongjoon Choi ◽  
Eduardo A. Groisman ◽  
Dong-Hyun Kang ◽  
Dongwoo Shin ◽  
...  

ABSTRACTArginine deiminase (ADI), carbamate kinase (CK), and ornithine transcarbamoylase (OTC) constitute the ADI system. In addition to metabolic functions, the ADI system has been implicated in the virulence of certain pathogens. The pathogenic intracellular bacteriumSalmonella entericaserovar Typhimurium possesses theSTM4467,STM4466, andSTM4465genes, which are predicted to encode ADI, CK, and OTC, respectively. Here we report that theSTM4467gene encodes an ADI and that ADI activity plays a role in the successful infection of a mammalian host byS. Typhimurium. AnSTM4467deletion mutant was defective for replication inside murine macrophages and was attenuated for virulence in mice. We determined that a regulatory protein encoded by theSTM4463gene functions as an activator forSTM4467expression. The expression of the ADI pathway genes was enhanced inside macrophages in a process that required STM4463. Lack of STM4463 impaired the ability ofS. Typhimurium to replicate within macrophages. A mutant defective inSTM4467-encoded ADI displayed normal production of nitric oxide by macrophages.


2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Michael Chung ◽  
Yicheng Xie ◽  
Heather Newkirk ◽  
Mei Liu ◽  
Jason J. Gill ◽  
...  

Here, we present the annotated genome of Shemara, a siphophage of Salmonella enterica. The Shemara genome is 44 kb with 83 predicted protein-coding genes. At the nucleotide and amino acid levels, Shemara is most similar to phages in the Guernseyvirinae subfamily.


Sign in / Sign up

Export Citation Format

Share Document