scholarly journals Molecular Investigation and Phylogeny of Anaplasma spp. in Mediterranean Ruminants Reveal the Presence of Neutrophil-Tropic Strains Closely Related to A. platys

2013 ◽  
Vol 80 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Rosanna Zobba ◽  
Antonio G. Anfossi ◽  
Maria Luisa Pinna Parpaglia ◽  
Gian Mario Dore ◽  
Bernardo Chessa ◽  
...  

ABSTRACTFew data are available on the prevalence and molecular typing of species belonging to the genusAnaplasmain Mediterranean ruminants. In this study, PCR analysis and sequencing of both 16S rRNA andgroELgenes were combined to investigate the presence, prevalence, and molecular traits ofAnaplasmaspp. in ruminants sampled on the Island of Sardinia, chosen as a subtropical representative area. The results demonstrate a high prevalence ofAnaplasmaspp. in ruminants, with animals infected by at least four of sixAnaplasmaspecies (Anaplasma marginale,A. bovis,A. ovis, andA. phagocytophilum). Moreover, ruminants host a number of neutrophil-tropic strains genetically closely related to the canine pathogenA. platys. The highAnaplasmaspp. prevalence and the identification of as-yet-unclassified neutrophil-tropic strains raise concerns about the specificity of serological tests routinely used in ruminants and provide additional background for reconstructing the evolutionary history of species genetically related toA. phagocytophilum.

2008 ◽  
Vol 77 (1) ◽  
pp. 117-121 ◽  
Author(s):  
S. Otlu ◽  
M. Sahin ◽  
H. I. Atabay ◽  
A. Unver

The prevalence of brucellosis was investigated in cattle, farmers and veterinarians in the Kars district of Turkey between 2004 - 2006. In order to achieve this, a total of 407 serum samples of cattle from 27 herds having history of abortions were examined for Brucella antibodies by RBPT and SAT. In addition, the sera collected from 246 farmers (130 males and 116 females) and 28 veterinarians in the same district were analysed serologically by RBPT, SAT and ELISA. Of the cattle sera analysed, 134 (32.92%) and 141 (34.64%) were determined as positive by RBPT and SAT, respectively. Thirty-two (13%), 35 (14.22%) and 44 (17.88%) of the farmers' sera were found positive for brucellosis by RBPT, SAT and ELISA, respectively. There was no significant difference between sexes for Brucella seropositivity. Of the 28 sera from veterinarians, 13 (46.42%) were positive by the three serological tests. The high prevalence of brucellosis both in cattle and humans suggests that brucellosis is common in this area. Preventive and control measures should be implemented and pursued more strictly to reduce and/or eradicate brucellosis from the area.


mBio ◽  
2012 ◽  
Vol 3 (2) ◽  
Author(s):  
J. Ross Fitzgerald

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of human morbidity and mortality worldwide. The emergence in the last decade of a livestock-associated MRSA (LA-MRSA) clone which also has the capacity to cause zoonotic infections in humans has raised important questions regarding its origin and its potential to cause human epidemics. An important study by L. B. Price et al. [mBio 3(1):e00305-11, 2012] provides evidence for a human ancestral origin for LA-MRSA, raising concerns about agricultural practices that may have contributed to its emergence and expansion. The study highlights the potential for comparative whole-genome sequencing of closely related strains to provide valuable insights into the evolutionary history of bacterial pathogens.


mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Timothy J. Johnson ◽  
Jessica L. Danzeisen ◽  
Bonnie Youmans ◽  
Kyle Case ◽  
Katharine Llop ◽  
...  

ABSTRACT A clonal lineage of Escherichia coli known as ST131 has emerged as a dominating strain type causing extraintestinal infections in humans. The evolutionary history of ST131 E. coli is now well understood. However, the role of plasmids in ST131’s evolutionary history is poorly defined. This study utilized real-time, single-molecule sequencing to compare plasmids from various current and historical lineages of ST131. From this work, it was determined that a series of plasmid gains, losses, and recombinational events has led to the currently circulating plasmids of ST131 strains. These plasmids appear to have evolved to acquire similar gene clusters on multiple occasions, suggesting possible plasmid-mediated convergent evolution leading to evolutionary success. These plasmids also appear to be better suited to exist in specific strains of ST131 due to coadaptive mutations. Overall, a series of events has enabled the evolution of ST131 plasmids, possibly contributing to the lineage’s success. The extraintestinal pathogenic Escherichia coli (ExPEC) H30 subclone of sequence type 131 (ST131-H30) has emerged abruptly as a dominant lineage of ExPEC responsible for human disease. The ST131-H30 lineage has been well described phylogenetically, yet its plasmid complement is not fully understood. Here, single-molecule, real-time sequencing was used to generate the complete plasmid sequences of ST131-H30 isolates and those belonging to other ST131 clades. Comparative analyses revealed separate F-type plasmids that have shaped the evolution of the main fluoroquinolone-resistant ST131-H30 clades. Specifically, an F1:A2:B20 plasmid is strongly associated with the H30R/C1 clade, whereas an F2:A1:B− plasmid is associated with the H30Rx/C2 clade. A series of plasmid gene losses, gains, and rearrangements involving IS26 likely led to the current plasmid complements within each ST131-H30 sublineage, which contain several overlapping gene clusters with putative functions in virulence and fitness, suggesting plasmid-mediated convergent evolution. Evidence suggests that the H30Rx/C2-associated F2:A1:B− plasmid type was present in strains ancestral to the acquisition of fluoroquinolone resistance and prior to the introduction of a multidrug resistance-encoding gene cassette harboring bla CTX-M-15. In vitro experiments indicated a host strain-independent low frequency of plasmid transfer, differential levels of plasmid stability even between closely related ST131-H30 strains, and possible epistasis for carriage of these plasmids within the H30R/Rx lineages. IMPORTANCE A clonal lineage of Escherichia coli known as ST131 has emerged as a dominating strain type causing extraintestinal infections in humans. The evolutionary history of ST131 E. coli is now well understood. However, the role of plasmids in ST131’s evolutionary history is poorly defined. This study utilized real-time, single-molecule sequencing to compare plasmids from various current and historical lineages of ST131. From this work, it was determined that a series of plasmid gains, losses, and recombinational events has led to the currently circulating plasmids of ST131 strains. These plasmids appear to have evolved to acquire similar gene clusters on multiple occasions, suggesting possible plasmid-mediated convergent evolution leading to evolutionary success. These plasmids also appear to be better suited to exist in specific strains of ST131 due to coadaptive mutations. Overall, a series of events has enabled the evolution of ST131 plasmids, possibly contributing to the lineage’s success.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Peter Tiffin ◽  
Brandon S Gaut

Abstract Polyploidy has been an extremely common phenomenon in the evolutionary history of angiosperms. Despite this there are few data available to evaluate the effects of polyploidy on genetic diversity and to compare the relative effects of drift and selection in polyploids and related diploids. We investigated DNA sequence diversity at four nuclear loci (adh1, glb1, c1, and waxy) from the tetraploid Zea perennis and the closely related diploid Z. diploperennis. Contrary to expectations, we detected no strong evidence for greater genetic diversity in the tetraploid, or for consistent differences in the effects of either drift or selection between the tetraploid and the diploid. Our failure to find greater genetic diversity in Z. perennis may result from its relatively recent origin or demographic factors associated with its origin. In addition to comparing genetic diversity in the two species, we constructed genealogies to infer the evolutionary origin of Z. perennis. Although these genealogies are equivocal regarding the mode of origin, several aspects of these genealogies support an autotetraploid origin. Consistent with previous molecular data the genealogies do not, however, support the division of Zea into two sections, the section Zea and the section Luxuriantes.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Nicolas Arning ◽  
Daniel J. Wilson

Groundbreaking studies conducted in the mid-1980s demonstrated the possibility of sequencing ancient DNA (aDNA), which has allowed us to answer fundamental questions about the human past. Microbiologists were thus given a powerful tool to glimpse directly into inscrutable bacterial history, hitherto inaccessible due to a poor fossil record. Initially plagued by concerns regarding contamination, the field has grown alongside technical progress, with the advent of high-throughput sequencing being a breakthrough in sequence output and authentication. Albeit burdened with challenges unique to the analysis of bacteria, a growing number of viable sources for aDNA has opened multiple avenues of microbial research. Ancient pathogens have been extracted from bones, dental pulp, mummies and historical medical specimens and have answered focal historical questions such as identifying the aetiological agent of the black death as Yersinia pestis . Furthermore, ancient human microbiomes from fossilized faeces, mummies and dental plaque have shown shifts in human commensals through the Neolithic demographic transition and industrial revolution, whereas environmental isolates stemming from permafrost samples have revealed signs of ancient antimicrobial resistance. Culminating in an ever-growing repertoire of ancient genomes, the quickly expanding body of bacterial aDNA studies has also enabled comparisons of ancient genomes to their extant counterparts, illuminating the evolutionary history of bacteria. In this review we summarize the present avenues of research and contextualize them in the past of the field whilst also pointing towards questions still to be answered.


2020 ◽  
Vol 59 (1) ◽  
pp. e02198-20
Author(s):  
N. Effelsberg ◽  
M. Stegger ◽  
L. Peitzmann ◽  
O. Altinok ◽  
G. W. Coombs ◽  
...  

ABSTRACTStaphylococcus aureus ST45 is a major global MRSA lineage with huge strain diversity and a high clinical impact. It is one of the most prevalent carrier lineages but also frequently causes severe invasive disease, such as bacteremia. Little is known about its evolutionary history. In this study, we used whole-genome sequencing to analyze a large collection of 451 diverse ST45 isolates from 6 continents and 26 countries. De novo-assembled genomes were used to understand genomic plasticity and to perform coalescent analyses. The ST45 population contained two distinct sublineages, which correlated with the isolates’ geographical origins. One sublineage primarily consisted of European/North American isolates, while the second sublineage primarily consisted of African and Australian isolates. Bayesian analysis predicted ST45 originated in northwestern Europe about 500 years ago. Isolation time, host, and clinical symptoms did not correlate with phylogenetic groups. Our phylogenetic analyses suggest multiple acquisitions of the SCCmec element and key virulence factors throughout the evolution of the ST45 lineage.


2012 ◽  
Vol 19 (6) ◽  
pp. 948-953 ◽  
Author(s):  
Hans-Friedemann Kinkel ◽  
Sabine Dittrich ◽  
Britta Bäumer ◽  
Thomas Weitzel

ABSTRACTThe diagnosis of schistosomiasis in individuals from countries where the disease is not endemic is challenging, and few data are available on the accuracy of serological diagnosis in those patients. We evaluated the performance of eight serological assays, including four commercial kits, in the diagnosis of imported schistosomiasis in individuals from areas where the disease is not endemic, including six enzyme-linked immunosorbent assays using three different antigens, an indirect hemagglutination assay, and an indirect immunofluorescent-antibody test. To analyze the assays, we used a total of 141 serum samples, with 121 derived from patients with various parasitic infections (among which were 37 cases of schistosomiasis) and 20 taken from healthy volunteers. The sensitivity values for detection of schistosomiasis cases ranged from 41% to 78% and were higher forSchistosoma mansonithan forS. haematobiuminfections. Specificity values ranged from 76% to 100%; false-positive results were most frequent for samples from patients with cestode infections. By combining two or more tests, sensitivity improved markedly and specificity decreased only moderately. Serological tests are useful instruments for diagnosing imported schistosomiasis in countries where the disease is not endemic, but due to limitations in test sensitivities, we recommend the use of two or more assays in parallel.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Liangzhi Li ◽  
Zhenghua Liu ◽  
Delong Meng ◽  
Xueduan Liu ◽  
Xing Li ◽  
...  

ABSTRACTMembers of the genusAcidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genusAcidithiobacillusto answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes inAcidithiobacillusspp. The results showed that the evolutionary history of metal resistance genes inAcidithiobacillusspp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes inAcidithiobacillusspp. were acquired by early HGT events from species that shared habitats withAcidithiobacillusspp., such asAcidihalobacter,Thiobacillus,Acidiferrobacter, andThiomonasspecies. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizingAcidithiobacillus ferridurans,Acidithiobacillus ferrivorans, andAcidithiobacillus ferrooxidansand were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability ofAcidithiobacillusspp. to adapt to harsh environments. Altogether, the results suggested thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes inAcidithiobacillusspp.IMPORTANCEHorizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT inAcidithiobacillusspecies in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved inAcidithiobacillusare still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies ofAcidithiobacillusspp.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

ABSTRACT Cereulide-producing members of Bacillus cereus sensu lato group III (also known as emetic B. cereus) possess cereulide synthetase, a plasmid-encoded, nonribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by emetic B. cereus has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize group III B. cereus sensu lato genomes which possess ces (ces positive) alongside their closely related, ces-negative counterparts (i) to assess the genomic diversity encompassed by emetic B. cereus and (ii) to identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive group III B. cereus sensu lato genomes and the ces-negative genomes interspersed among them (n = 159), we show that emetic B. cereus is not clonal; rather, multiple lineages within group III harbor cereulide-producing strains, all of which share an ancestor incapable of producing cereulide (posterior probability = 0.86 to 0.89). Members of ST 26 share an ancestor that existed circa 1748 (95% highest posterior density [HPD] interval = 1246.89 to 1915.64) and first acquired the ability to produce cereulide before 1876 (95% HPD = 1641.43 to 1946.70). Within ST 26 alone, two subsequent ces gain events were observed, as well as three ces loss events, including among isolates responsible for B. cereus sensu lato toxicoinfection (i.e., “diarrheal” illness). IMPORTANCE B. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., emetic syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., diarrheal syndrome). Here, we show that emetic B. cereus is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some group III B. cereus sensu lato populations to oscillate between diarrheal and emetic foodborne pathogens over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus sensu lato outbreaks, since some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


2012 ◽  
Vol 79 (4) ◽  
pp. 1414-1417 ◽  
Author(s):  
Steven Slater ◽  
João C. Setubal ◽  
Brad Goodner ◽  
Kathryn Houmiel ◽  
Jian Sun ◽  
...  

ABSTRACTTwo groups independently sequenced theAgrobacterium tumefaciensC58 genome in 2001. We report here consolidation of these sequences, updated annotation, and additional analysis of the evolutionary history of the linear chromosome, which is apparently limited to the biovar I group ofAgrobacterium.


Sign in / Sign up

Export Citation Format

Share Document