scholarly journals Responsiveness of Aromatoleum aromaticum EbN1T to lignin-derived phenylpropanoids

Author(s):  
Jannes Vagts ◽  
Kristin Kalvelage ◽  
Arne Weiten ◽  
Ramona Buschen ◽  
Julian Gutsch ◽  
...  

The betaproteobacterial degradation specialist Aromatoleum aromaticum EbN1T utilizes several plant-derived 3-phenylpropanoids coupled to denitrification. In vivo responsiveness of A. aromaticum EbN1T was studied by exposing non-adapted cells to distinct pulses (spanning 100 μM to 0.1 nM) of 3-phenylpropanoate, cinnamate, 3-(4-hydroxyphenyl)propanoate, or p-coumarate. Time-resolved, targeted transcript analyses via qRT-PCR of four selected 3-phenylpropanoid genes revealed a response threshold of 30–50 nM for p-coumarate and 1–10 nM for the other three tested 3-phenylpropanoids. At these concentrations, transmembrane effector equilibration is attained by passive diffusion rather than active uptake via the ABC transporter presumably serving the studied 3-phenylpropanoids as well as benzoate. Highly substrate-specific enzyme formation (EbA5316–21) for the shared peripheral degradation pathway putatively involves the predicted TetR-type transcriptional repressor PprR. Accordingly, relative transcript abundances of ebA5316–21 are lower in succinate- and benzoate-grown wildtype cells compared to an unmarked in-frame ΔpprR mutant. In trans complementation of pprR into the ΔpprR background restored wildtype-like transcript levels. When adapted to p-coumarate, the three genotypes had similar relative transcript abundances of ebA5316–21, despite a significantly longer lag-phase of the pprR-complemented mutant (∼100-fold higher pprR transcript level than wildtype). Notably, transcript levels of ebA5316–21 were ∼10–100-fold higher in p-coumarate- versus succinate- or benzoate-adapted cells across all three genotypes. This possibly indicates the additional involvement of a yet unknown transcriptional regulator. Furthermore, physiological, transcriptional and (aromatic) acyl-CoA ester intermediate analyses of wildtype and ΔpprR mutant grown with binary substrate mixtures suggest a mode of catabolite repression of superior order to PprR. IMPORTANCE Lignin is a ubiquitous hetero-biopolymer built from of a suite of 3-phenylpropanoid subunits. It not only accounts for more than 30% of the global plant dry material, but lignin-related compounds are also increasingly released into the environment from anthropogenic sources, i.e., by wastewater effluents from the paper and pulp industry. Hence, following biological or industrial decomplexation of lignin, vast amounts of structurally diverse 3-phenylpropanoids enter terrestrial and aquatic habitats, where they serve as substrates for microbial degradation. This raises the question what signaling systems environmental bacteria employ to detect these nutritionally attractive compounds and to adjust their catabolism accordingly. Moreover, determining in vivo response thresholds of an anaerobic degradation specialist such as A. aromaticum EbN1T for these aromatic compounds provides insights into the environmental fate of the latter, i.e., when they could escape biodegradation due to too low ambient concentrations.

2016 ◽  
Vol 28 (2) ◽  
pp. 200
Author(s):  
T. Fujii ◽  
H. Hirayama ◽  
S. Kageyama ◽  
A. Naito ◽  
S. Fukuda ◽  
...  

The aquaporins (AQP) are a family of small integral membrane proteins that work as channels for rapid water transport. In mouse embryos, AQP3, AQP7, and AQP9 were found to play important roles in the pre-implantation development or adaptive cellular response to osmotic stress. In addition, because AQP3, AQP7, and AQP9 permeate not only water but also cryoprotectant, such as glycerol, these AQP thought to be involved in the process of cryopreservation. However, little information is available for AQP in bovine embryos. The understanding of the mechanisms mediated by AQP that embryos utilise to survive during culture and the process of cryopreservation will contribute to development of in vitro culture systems and cryopreservation procedures for bovine embryos. The aims of present study were to clarify the expression status of AQP3, AQP7, and AQP9 in bovine pre-implantation embryos, and to evaluate the expression level of AQP3 in in vivo-derived (IVD) and IVF bovine embryos. For production of IVF embryos, cumulus-oocyte complexes (COC) were aspirated from ovaries collected at a local slaughterhouse. The COC were in vitro matured, fertilized, and then cultured for 7 days. The IVD embryos at early blastocyst (EB) and blastocyst (BC) stage were obtained from donor cows treated with superovulation and AI. In experiment 1, in order to clarify the expression of AQP3, AQP7, and AQP9 mRNA in bovine pre-implantation embryos, total RNA was extracted from pools of 30 IVM oocytes, pools of 15 IVF embryos at 2- to 4-cell, 8- to 16-cell, compaction morula (CM), EB, BC, and expanded blastocyst (ExBC) stage, and RT-PCR was performed followed by agarose gel electrophoresis. In experiment 2, in order to clarify the expression status of AQP3, AQP7, and AQP9 during bovine pre-implantation development after zygotic gene activation, total RNA was extracted from pools of 15 IVF embryos at 8- to 16-cell, CM, EB, BC and ExBC stage (n = 5), and relative quantifications of AQP mRNA were performed using real-time RT-PCR. Data were analysed by Scheffé’s method. In experiment 3, AQP3 transcript levels in single IVD and IVF embryos at EB and BC stages (n = 10) was evaluated by real-time RT-PCR. Data were analysed by Mann-Whitney’s U test. In experiment 1, AQP3 and AQP7 transcripts were detected in IVM oocytes and all stages of embryos. AQP9 mRNA was detected in IVM oocytes and in 2- to 4-cell, 8- to 16 cell, CM, and EB stage embryos, but was not detected in BC and ExBC stage embryos. In experiment 2, AQP3 and AQP7 transcript levels were significantly increased from 8- to 16-cell to CM and EB stage, and significantly decreased from EB to BC and ExBC stages (P < 0.05). AQP9 transcript level was significantly decreased from 8- to 16-cell to CM and EB stage (P < 0.05). In experiment 3, AQP3 transcript level in IVF embryos was significantly lower than that in in vivo embryos at the BC stage (P < 0.05). Our results indicate that AQP3 and AQP7 may have specific roles at morula and EB stage in bovine embryos. In addition, AQP3 expression is influenced by developmental condition of bovine embryos.


Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yusaku Hontani ◽  
Mikhail Baloban ◽  
Francisco Velazquez Escobar ◽  
Swetta A. Jansen ◽  
Daria M. Shcherbakova ◽  
...  

AbstractNear-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C–S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3279
Author(s):  
Maria Habib ◽  
Mohammad Faris ◽  
Raneem Qaddoura ◽  
Manal Alomari ◽  
Alaa Alomari ◽  
...  

Maintaining a high quality of conversation between doctors and patients is essential in telehealth services, where efficient and competent communication is important to promote patient health. Assessing the quality of medical conversations is often handled based on a human auditory-perceptual evaluation. Typically, trained experts are needed for such tasks, as they follow systematic evaluation criteria. However, the daily rapid increase of consultations makes the evaluation process inefficient and impractical. This paper investigates the automation of the quality assessment process of patient–doctor voice-based conversations in a telehealth service using a deep-learning-based classification model. For this, the data consist of audio recordings obtained from Altibbi. Altibbi is a digital health platform that provides telemedicine and telehealth services in the Middle East and North Africa (MENA). The objective is to assist Altibbi’s operations team in the evaluation of the provided consultations in an automated manner. The proposed model is developed using three sets of features: features extracted from the signal level, the transcript level, and the signal and transcript levels. At the signal level, various statistical and spectral information is calculated to characterize the spectral envelope of the speech recordings. At the transcript level, a pre-trained embedding model is utilized to encompass the semantic and contextual features of the textual information. Additionally, the hybrid of the signal and transcript levels is explored and analyzed. The designed classification model relies on stacked layers of deep neural networks and convolutional neural networks. Evaluation results show that the model achieved a higher level of precision when compared with the manual evaluation approach followed by Altibbi’s operations team.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 184-205
Author(s):  
Nanxuan Mei ◽  
Jonas Hedberg ◽  
Mikael T. Ekvall ◽  
Egle Kelpsiene ◽  
Lars-Anders Hansson ◽  
...  

Cobalt (Co) nanoparticles (NPs) may be diffusely dispersed into natural ecosystems from various anthropogenic sources such as traffic settings and eventually end up in aquatic systems. As environmentally dispersed Co NPs may be transferred through an aquatic food web, this study investigated this transfer from algae (Scendesmus sp.) to zooplankton (Daphnia magna) to fish (Crucian carp, Carassius carassius). Effects of interactions between naturally excreted biomolecules from D. magna and Co NPs were investigated from an environmental fate perspective. ATR-FTIR measurements showed the adsorption of both algae constituents and excreted biomolecules onto the Co NPs. Less than 5% of the Co NPs formed heteroagglomerates with algae, partly an effect of both agglomeration and settling of the Co NPs. The presence of excreted biomolecules in the solution did not affect the extent of heteroagglomeration. Despite the low extent of heteroagglomeration between Co NPs and algae, the Co NPs were transferred to the next trophic level (D. magna). The Co uptake in D. magna was 300 times larger than the control samples (without Co NP), which were not influenced by the addition of excreted biomolecules to the solution. Significant uptake of Co was observed in the intestine of the fish feeding on D. magna containing Co NPs. No bioaccumulation of Co was observed in the fish. Moreover, 10–20% of the transferred Co NP mass was dissolved after 24 h in the simulated gut solution of the zooplankton (pH 7), and 50–60% was dissolved in the simulated gut solution of the fish (pH 4). The results elucidate that Co NPs gain different properties upon trophic transfer in the food web. Risk assessments should hence be conducted on transformed and weathered NPs rather than on pristine particles.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 485
Author(s):  
Veronika Huntosova ◽  
Denis Horvath ◽  
Robert Seliga ◽  
Georges Wagnieres

Detection of tissue and cell oxygenation is of high importance in fundamental biological and in many medical applications, particularly for monitoring dysfunction in the early stages of cancer. Measurements of the luminescence lifetimes of molecular probes offer a very promising and non-invasive approach to estimate tissue and cell oxygenation in vivo and in vitro. We optimized the evaluation of oxygen detection in vivo by [Ru(Phen)3]2+ in the chicken embryo chorioallantoic membrane model. Its luminescence lifetimes measured in the CAM were analyzed through hierarchical clustering. The detection of the tissue oxygenation at the oxidative stress conditions is still challenging. We applied simultaneous time-resolved recording of the mitochondrial probe MitoTrackerTM OrangeCMTMRos fluorescence and [Ru(Phen)3]2+ phosphorescence imaging in the intact cell without affecting the sensitivities of these molecular probes. [Ru(Phen)3]2+ was demonstrated to be suitable for in vitro detection of oxygen under various stress factors that mimic oxidative stress: other molecular sensors, H2O2, and curcumin-mediated photodynamic therapy in glioma cancer cells. Low phototoxicities of the molecular probes were finally observed. Our study offers a high potential for the application and generalization of tissue oxygenation as an innovative approach based on the similarities between interdependent biological influences. It is particularly suitable for therapeutic approaches targeting metabolic alterations as well as oxygen, glucose, or lipid deprivation.


2019 ◽  
Vol 9 (11) ◽  
pp. 2366 ◽  
Author(s):  
Laura Di Sieno ◽  
Alberto Dalla Mora ◽  
Alessandro Torricelli ◽  
Lorenzo Spinelli ◽  
Rebecca Re ◽  
...  

In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.


2005 ◽  
Vol 25 (12) ◽  
pp. 4977-4992 ◽  
Author(s):  
Hao G. Nguyen ◽  
Dharmaraj Chinnappan ◽  
Takeshi Urano ◽  
Katya Ravid

ABSTRACT The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.


Sign in / Sign up

Export Citation Format

Share Document