scholarly journals Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

2014 ◽  
Vol 81 (3) ◽  
pp. 1177-1187 ◽  
Author(s):  
Natalie M. Mitchell ◽  
James R. Johnson ◽  
Brian Johnston ◽  
Roy Curtiss ◽  
Melha Mellata

ABSTRACTChicken products are suspected as a source of extraintestinal pathogenicEscherichia coli(ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-sourceE. coliis not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenicE. coli(APEC), uropathogenicE. coli(UPEC), neonatal meningitisE. coli(NMEC), and sepsis-associatedE. coli(SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes amongE. coliisolates from retail chicken products and identify key virulence traits that could be used for screening.

2018 ◽  
Vol 6 (21) ◽  
Author(s):  
Aixia Xu ◽  
James R. Johnson ◽  
Shiowshuh Sheen ◽  
David S. Needleman ◽  
Christopher Sommers

ABSTRACT Potential extraintestinal pathogenic Escherichia coli strains DP254, WH333, WH398, F356, FEX675, and FEX725 were isolated from retail chicken meat products. Here, we report the draft genome sequences for these six E. coli isolates, which are currently being used in food safety research.


2012 ◽  
Vol 78 (16) ◽  
pp. 5824-5830 ◽  
Author(s):  
Catherine M. Logue ◽  
Curt Doetkott ◽  
Paul Mangiamele ◽  
Yvonne M. Wannemuehler ◽  
Timothy J. Johnson ◽  
...  

ABSTRACTNeonatal meningitisEscherichia coli(NMEC) is one of the top causes of neonatal meningitis worldwide. Here, 85 NMEC and 204 fecalE. coliisolates from healthy humans (HFEC) were compared for possession of traits related to virulence, antimicrobial resistance, and plasmid content. This comparison was done to identify traits that typify NMEC and distinguish it from commensal strains to refine the definition of the NMEC subpathotype, identify traits that might contribute to NMEC pathogenesis, and facilitate choices of NMEC strains for future study. A large number ofE. colistrains from both groups were untypeable, with the most common serogroups occurring among NMEC being O18, followed by O83, O7, O12, and O1. NMEC strains were more likely than HFEC strains to be assigned to the B2 phylogenetic group. Few NMEC or HFEC strains were resistant to antimicrobials. Genes that best discriminated between NMEC and HFEC strains and that were present in more than 50% of NMEC isolates were mainly from extraintestinal pathogenicE. coligenomic and plasmid pathogenicity islands. Several of these defining traits had not previously been associated with NMEC pathogenesis, are of unknown function, and are plasmid located. Several genes that had been previously associated with NMEC virulence did not dominate among the NMEC isolates. These data suggest that there is much about NMEC virulence that is unknown and that there are pitfalls to studying single NMEC isolates to represent the entire subpathotype.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
James P. R. Connolly ◽  
Natasha C. A. Turner ◽  
Jennifer C. Hallam ◽  
Patricia T. Rimbi ◽  
Tom Flett ◽  
...  

Appropriate interpretation of environmental signals facilitates niche specificity in pathogenic bacteria. However, the responses of niche-specific pathogens to common host signals are poorly understood. d-Serine (d-ser) is a toxic metabolite present in highly variable concentrations at different colonization sites within the human host that we previously found is capable of inducing changes in gene expression. In this study, we made the striking observation that the global transcriptional response of three Escherichia coli pathotypes – enterohaemorrhagic E. coli (EHEC), uropathogenic E. coli (UPEC) and neonatal meningitis-associated E. coli (NMEC) – to d-ser was highly distinct. In fact, we identified no single differentially expressed gene common to all three strains. We observed the induction of ribosome-associated genes in extraintestinal pathogens UPEC and NMEC only, and the induction of purine metabolism genes in gut-restricted EHEC, and UPEC indicating distinct transcriptional responses to a common signal. UPEC and NMEC encode dsdCXA – a genetic locus required for detoxification and hence normal growth in the presence of d-ser. Specific transcriptional responses were induced in strains accumulating d-ser (WT EHEC and UPEC/NMEC mutants lacking the d-ser-responsive transcriptional activator DsdC), corroborating the notion that d-ser is an unfavourable metabolite if not metabolized. Importantly, many of the UPEC-associated transcriptome alterations correlate with published data on the urinary transcriptome, supporting the hypothesis that d-ser sensing forms a key part of urinary niche adaptation in this pathotype. Collectively, our results demonstrate distinct pleiotropic responses to a common metabolite in diverse E. coli pathotypes, with important implications for niche selectivity.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2012 ◽  
Vol 80 (12) ◽  
pp. 4115-4122 ◽  
Author(s):  
Rachel R. Spurbeck ◽  
Paul C. Dinh ◽  
Seth T. Walk ◽  
Ann E. Stapleton ◽  
Thomas M. Hooton ◽  
...  

ABSTRACTExtraintestinalEscherichia coli(ExPEC), a heterogeneous group of pathogens, encompasses avian, neonatal meningitis, and uropathogenicE. colistrains. While several virulence factors are associated with ExPEC, there is no core set of virulence factors that can be used to definitively differentiate these pathotypes. Here we describe a multiplex of four virulence factor-encoding genes,yfcV,vat,fyuA, andchuA, highly associated with uropathogenicE. colistrains that can distinguish three groups ofE. coli: diarrheagenic and animal-associatedE. colistrains, human commensal and avian pathogenicE. colistrains, and uropathogenic and neonatal meningitisE. colistrains. Furthermore, human intestinal isolates that encode all four predictor genes express them during exponential growth in human urine and colonize the bladder in the mouse model of ascending urinary tract infection in higher numbers than human commensal strains that do not encode the four predictor genes (P= 0.02), suggesting that the presence of the predictors correlates with uropathogenic potential.


2012 ◽  
Vol 80 (10) ◽  
pp. 3669-3678 ◽  
Author(s):  
Yu-ting Tseng ◽  
Shainn-Wei Wang ◽  
Kwang Sik Kim ◽  
Ying-Hsiang Wang ◽  
Yufeng Yao ◽  
...  

ABSTRACTNeonatal meningitisEscherichia coli(NMEC) is the most common Gram-negative organism that is associated with neonatal meningitis, which usually develops as a result of hematogenous spread of the bacteria. There are two key pathogenesis processes for NMEC to penetrate into the brain, the essential step for the development ofE. colimeningitis: a high-level bacteremia and traversal of the blood-brain barrier (BBB). Our previous study has shown that the bacterial outer membrane protein NlpI contributes to NMEC binding to and invasion of brain microvascular endothelial cells, the major component cells of the BBB, suggesting a role for NlpI in NMEC crossing of the BBB. In this study, we showed that NlpI is involved in inducing a high level of bacteremia. In addition, NlpI contributed to the recruitment of the complement regulator C4bp to the surface of NMEC to evade serum killing, which is mediated by the classical complement pathway. NlpI may be involved in the interaction between C4bp and OmpA, which is an outer membrane protein that directly interacts with C4bp on the bacterial surface. The involvement of NlpI in two key pathogenesis processes of NMEC meningitis may make this bacterial factor a potential target for prevention and therapy ofE. colimeningitis.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Brian M. Forde ◽  
Hosam M. Zowawi ◽  
Patrick N. A. Harris ◽  
Leah Roberts ◽  
Emad Ibrahim ◽  
...  

ABSTRACTResistance to last-line polymyxins mediated by the plasmid-borne mobile colistin resistance gene (mcr-1) represents a new threat to global human health. Here we present the complete genome sequence of anmcr-1-positive multidrug-resistantEscherichia colistrain (MS8345). We show that MS8345 belongs to serotype O2:K1:H4, has a large 241,164-bp IncHI2 plasmid that carries 15 other antibiotic resistance genes (including the extended-spectrum β-lactamaseblaCTX-M-1) and 3 putative multidrug efflux systems, and contains 14 chromosomally encoded antibiotic resistance genes. MS8345 also carries a large ColV-like virulence plasmid that has been associated withE. colibacteremia. Whole-genome phylogeny revealed that MS8345 clusters within a discrete clade in the sequence type 95 (ST95) lineage, and MS8345 is very closely related to the highly virulent O45:K1:H4 clone associated with neonatal meningitis. Overall, the acquisition of a plasmid carrying resistance to colistin and multiple other antibiotics in this virulentE. colilineage is concerning and might herald an era where the empirical treatment of ST95 infections becomes increasingly more difficult.IMPORTANCEEscherichia coliST95 is a globally disseminated clone frequently associated with bloodstream infections and neonatal meningitis. However, the ST95 lineage is defined by low levels of drug resistance amongst clinical isolates, which normally provides for uncomplicated treatment options. Here, we provide the first detailed genomic analysis of anE. coliST95 isolate that has both high virulence potential and resistance to multiple antibiotics. Using the genome, we predicted its virulence and antibiotic resistance mechanisms, which include resistance to last-line antibiotics mediated by the plasmid-bornemcr-1gene. Finding an ST95 isolate resistant to nearly all antibiotics that also has a high virulence potential is of major clinical importance and underscores the need to monitor new and emerging trends in antibiotic resistance development in this important global lineage.


2021 ◽  
Vol 10 (38) ◽  
Author(s):  
Aline L. de Oliveira ◽  
Timothy J. Johnson ◽  
Nicolle L. Barbieri ◽  
Lisa K. Nolan ◽  
Catherine M. Logue

Neonatal meningitis E. coli (NMEC) is the second leading cause of sepsis and meningitis in neonates worldwide. Here, we report the genome sequence of NMEC15, belonging to serotype O18:K1, isolated from the cerebrospinal fluid (CSF) of an infant with neonatal bacterial meningitis (NBM) in the Netherlands.


Author(s):  
Jinghua Yang ◽  
Wei Ma ◽  
Yuanyuan Wu ◽  
Hui Zhou ◽  
Siyu Song ◽  
...  

Escherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy.


2021 ◽  
Vol 10 (8) ◽  
Author(s):  
Jacob R. Elder ◽  
Yanhong Liu ◽  
Siddhartha Kanrar ◽  
Andrew Gehring ◽  
Aixia Xu ◽  
...  

ABSTRACT Escherichia coli strain FEX669 was isolated from retail ground chicken and shown to contain the extraintestinal pathogenic E. coli (ExPEC) virulence genes sfaD, focC, and iutA. Because this presumptive ExPEC strain was isolated from a retail food item and it was a weak biofilm former, it was characterized using whole-genome sequencing using the PacBio RS II platform. Genomic analysis showed that the FEX669 chromosome is 4,973,943 bp long, with a GC content of 50.47%, and is accompanied by a ColV plasmid that is 237,102 bp long, with a GC content of 50.49%.


Sign in / Sign up

Export Citation Format

Share Document