Distribution of Pathogenicity Islands OI-122, OI-43/48, and OI-57 and a High-Pathogenicity Island in Shiga Toxin-Producing Escherichia coli
ABSTRACTPathogenicity islands (PAIs) play an important role in Shiga toxin-producingEscherichia coli(STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtypeeaeandstxgenes, respectively. Phylogenetic trees were constructed based on the sequences ofpagCamong 34 STEC strains andihaamong 67 diverse pathogenicE. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs.terC(62.5%) andureC(62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (exceptiha) were found to be primarily associated witheae-positive STEC, whereas HPI occurred independently of theeaepresence. The strong association of OI-122, OI-43/48, and OI-57 witheae-positive STEC suggests in part that different pathogenic mechanisms exist betweeneae-positive andeae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.