scholarly journals Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli

2013 ◽  
Vol 80 (4) ◽  
pp. 1411-1420 ◽  
Author(s):  
Magaly Toro ◽  
Guojie Cao ◽  
Wenting Ju ◽  
Marc Allard ◽  
Rodolphe Barrangou ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) strains (n= 194) representing 43 serotypes andE. coliK-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n= 81) was further analyzed for subtype I-Ecasand virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-Ecasand virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P< 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P< 0.05). The relationship between the CRISPR-cassystem and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.

2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Peter C. H. Feng ◽  
Sabine Delannoy ◽  
David W. Lacher ◽  
Joseph M. Bosilevac ◽  
Patrick Fach ◽  
...  

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) strains of the O91:H21 serotype have caused severe infections, including hemolytic-uremic syndrome. Strains of the O91 serogroup have been isolated from food, animals, and the environment worldwide but are not well characterized. We used a microarray and other molecular assays to examine 49 serogroup O91 strains (environmental, food, and clinical strains) for their virulence potential and phylogenetic relationships. Most of the isolates were identified to be strains of the O91:H21 and O91:H14 serotypes, with a few O91:H10 strains and one O91:H9 strain being identified. None of the strains had the eae gene, which codes for the intimin adherence protein, and many did not have some of the genetic markers that are common in other STEC strains. The genetic profiles of the strains within each serotype were similar but differed greatly between strains of different serotypes. The genetic profiles of the O91:H21 strains that we tested were identical or nearly identical to those of the clinical O91:H21 strains that have caused severe diseases. Multilocus sequence typing and clustered regularly interspaced short palindromic repeat analyses showed that the O91:H21 strains clustered within the STEC 1 clonal group but the other O91 serotype strains were phylogenetically diverse. IMPORTANCE This study showed that food and environmental O91:H21 strains have similar genotypic profiles and Shiga toxin subtypes and are phylogenetically related to the O91:H21 strains that have caused hemolytic-uremic syndrome, suggesting that these strains may also have the potential to cause severe illness.


2014 ◽  
Vol 80 (20) ◽  
pp. 6395-6402 ◽  
Author(s):  
Marion Tseng ◽  
Pina M. Fratamico ◽  
Lori Bagi ◽  
Sabine Delannoy ◽  
Patrick Fach ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n= 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n= 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes:stx2e,iha,ecs1763,lpfAO113,estIa(STa),ehaA,paa,terE, andureD. Theeae,nleF, andnleH1-2genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, includingiha, were identified (n= 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn.


2014 ◽  
Vol 53 (3) ◽  
pp. 986-990 ◽  
Author(s):  
Linda Chui ◽  
Vincent Li ◽  
Patrick Fach ◽  
Sabine Delannoy ◽  
Katarzyna Malejczyk ◽  
...  

Virulence markers in Shiga toxin-producingEscherichia coli(STEC) and their association with diseases remain largely unknown. This study determines the importance of 44 genetic markers for STEC (O157 and non-O157) from human clinical cases and their correlation to disease outcome. STEC isolated from a cattle surveillance program were also included. The virulence genes tested were present in almost all O157:H7 isolates but highly variable in non-O157 STEC isolates. Patient age was a significant determinant of clinical outcome.


2015 ◽  
Vol 83 (5) ◽  
pp. 1983-1991 ◽  
Author(s):  
Silvia A. C. Schinner ◽  
Matthew E. Mokszycki ◽  
Jimmy Adediran ◽  
Mary Leatham-Jensen ◽  
Tyrrell Conway ◽  
...  

Escherichia coliMG1655, a K-12 strain, uses glycolytic nutrients exclusively to colonize the intestines of streptomycin-treated mice when it is the onlyE. colistrain present or when it is confronted withE. coliEDL933, an O157:H7 strain. In contrast,E. coliEDL933 uses glycolytic nutrients exclusively when it is the onlyE. colistrain in the intestine but switches in part to gluconeogenic nutrients when it colonizes mice precolonized withE. coliMG1655 (R. L. Miranda et al., Infect Immun 72:1666–1676, 2004,http://dx.doi.org/10.1128/IAI.72.3.1666-1676.2004). Recently, J. W. Njoroge et al. (mBio 3:e00280-12, 2012,http://dx.doi.org/10.1128/mBio.00280-12) reported thatE. coli86-24, an O157:H7 strain, activates the expression of virulence genes under gluconeogenic conditions, suggesting that colonization of the intestine with a probioticE. colistrain that outcompetes O157:H7 strains for gluconeogenic nutrients could render them nonpathogenic. Here we report thatE. coliNissle 1917, a probiotic strain, uses both glycolytic and gluconeogenic nutrients to colonize the mouse intestine between 1 and 5 days postfeeding, appears to stop using gluconeogenic nutrients thereafter in a large, long-term colonization niche, but continues to use them in a smaller niche to compete with invadingE. coliEDL933. Evidence is also presented suggesting that invadingE. coliEDL933 uses both glycolytic and gluconeogenic nutrients and needs the ability to perform gluconeogenesis in order to colonize mice precolonized withE. coliNissle 1917. The data presented here therefore rule out the possibility thatE. coliNissle 1917 can starve the O157:H7E. colistrain EDL933 of gluconeogenic nutrients, even thoughE. coliNissle 1917 uses such nutrients to compete withE. coliEDL933 in the mouse intestine.


2015 ◽  
Vol 82 (4) ◽  
pp. 1090-1101 ◽  
Author(s):  
Michelle Qiu Carter ◽  
Beatriz Quinones ◽  
Xiaohua He ◽  
Wayne Zhong ◽  
Jacqueline W. Louie ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intactfliCgene, only one strain retained swimming motility. Diversestxsubtypes were identified, includingstx1a,stx2a,stx2c, andstx2e. Although no correlation was detected between thestxgenotype and Stx1 production, high Stx2 production was detected mainly in strains carryingstx2aonly and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagicE. coliwere conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.


2014 ◽  
Vol 80 (15) ◽  
pp. 4757-4763 ◽  
Author(s):  
Peter C. H. Feng ◽  
Sabine Delannoy ◽  
David W. Lacher ◽  
Luis Fernando dos Santos ◽  
Lothar Beutin ◽  
...  

ABSTRACTShiga toxin-producingEscherichia colistrains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogenic strains that were implicated in hemolytic-uremic syndrome in Australia, there were no clear differences between the pathogens and the environmental strains with respect to the 41 genetic markers tested. Furthermore, all of the strains carried only Shiga toxin subtypes associated with human infections, suggesting that the environmental strains have the potential to cause disease. Most of the O113:H21 strains were closely related and belonged in the same clonal group (ST-223), but CRISPR analysis showed a great degree of genetic diversity among the O113:H21 strains.


2017 ◽  
Vol 85 (12) ◽  
Author(s):  
Roslen Bondì ◽  
Paola Chiani ◽  
Valeria Michelacci ◽  
Fabio Minelli ◽  
Alfredo Caprioli ◽  
...  

ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains.


2015 ◽  
Vol 60 (3) ◽  
pp. 1874-1877 ◽  
Author(s):  
S. Baron ◽  
S. Delannoy ◽  
S. Bougeard ◽  
E. Larvor ◽  
E. Jouy ◽  
...  

This study investigated antimicrobial resistance, screened for the presence of virulence genes involved in intestinal infections, and determined phylogenetic groups ofEscherichia coliisolates from untreated poultry and poultry treated with ceftiofur, an expanded-spectrum cephalosporin. Results show that none of the 76 isolates appeared to be Shiga toxin-producingE. colior enteropathogenicE. coli. All isolates were negative for the major virulence factors/toxins tested (ehxA,cdt, heat-stable enterotoxin [ST], and heat-labile enterotoxin [LT]). The few virulence genes harbored in isolates generally did not correlate with isolate antimicrobial resistance or treatment status. However, some of the virulence genes were significantly associated with certain phylogenetic groups.


2013 ◽  
Vol 79 (11) ◽  
pp. 3406-3412 ◽  
Author(s):  
Wenting Ju ◽  
Jinling Shen ◽  
Magaly Toro ◽  
Shaohua Zhao ◽  
Jianghong Meng

ABSTRACTPathogenicity islands (PAIs) play an important role in Shiga toxin-producingEscherichia coli(STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtypeeaeandstxgenes, respectively. Phylogenetic trees were constructed based on the sequences ofpagCamong 34 STEC strains andihaamong 67 diverse pathogenicE. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs.terC(62.5%) andureC(62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (exceptiha) were found to be primarily associated witheae-positive STEC, whereas HPI occurred independently of theeaepresence. The strong association of OI-122, OI-43/48, and OI-57 witheae-positive STEC suggests in part that different pathogenic mechanisms exist betweeneae-positive andeae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.


2014 ◽  
Vol 81 (1) ◽  
pp. 415-421 ◽  
Author(s):  
Pablo Quirós ◽  
Alexandre Martínez-Castillo ◽  
Maite Muniesa

ABSTRACTDetection of Shiga toxin-producingEscherichia coli(STEC) by culture methods is advisable to identify the pathogen, but recovery of the strain responsible for the disease is not always possible. The use of DNA-based methods (PCR, quantitative PCR [qPCR], or genomics) targeting virulence genes offers fast and robust alternatives. However, detection ofstxis not always indicative of STEC becausestxcan be located in the genome of temperate phages found in the samples as free particles; this could explain the numerous reports of positivestxdetection without successful STEC isolation. An approach based on filtration through low-protein-binding membranes and additional washing steps was applied to reduce free Stx phages without reducing detection of STEC bacteria. River water, food, and stool samples were spiked with suspensions of phage 933W and, as a STEC surrogate, a lysogen harboring a recombinant Stx phage in whichstxwas replaced bygfp. Bacteria were tested either by culture or by qPCR forgfpwhile phages were tested using qPCR targetingstxin phage DNA. The procedure reduces phage particles by 3.3 log10units without affecting the recovery of the STEC population (culturable or assessed by qPCR). The method is applicable regardless of phage and bacteria densities and is useful in different matrices (liquid or solid). This approach eliminates or considerably reduces the interference of Stx phages in the detection of STEC by molecular methods. The reduction of possible interference would increase the efficiency and reliability of genomics for STEC detection when the method is applied routinely in diagnosis and food analysis.


Sign in / Sign up

Export Citation Format

Share Document