Recruitment of the LIM protein hic-5 to focal contacts of human platelets

1998 ◽  
Vol 111 (15) ◽  
pp. 2181-2188 ◽  
Author(s):  
J. Hagmann ◽  
M. Grob ◽  
A. Welman ◽  
G. van Willigen ◽  
M.M. Burger

Platelets are anuclear, membrane-bounded fragments derived from megakaryocytes which, upon stimulation, assemble an actin skeleton including stress fibres and focal contacts. The focal contacts resemble those of tissue culture cells. However, they lack paxillin, a conspicuous component of these organelles. We found that instead of paxillin, platelets contain a related protein with a molecular mass of 55 kDa that crossreacts with a monoclonal antibody against paxillin. The gene for the 55 kDa protein was cloned from a bone marrow cDNA library and turned out to be identical to a recently discovered gene encoding hic-5. Like paxillin, hic-5 is a cytoskeletal protein containing four carboxy-terminal LIM domains and LD motifs in the amino-terminal half. The LIM domains of both hic-5 and paxillin are capable of targetting green fluorescent protein to focal contacts. In addition, GST-hic-5 precipitates the focal adhesion kinase pp125(FAK) and talin from platelet extracts. Only trace amounts of hic-5 occur in DAMI cells, a megakaryocytic cell line, and in megakaryocytes cultured from CD34+ cells obtained from umbilical cord blood. However, RT-polymerase chain reactions performed with RNA obtained from platelets gave a positive result when primers specific for hic-5 were used, but were negative with paxillin-specific primers, indicating that a switch from paxillin expression to hic-5 expression must occur late in the maturation of megakaryocytes into platelets.

2010 ◽  
Vol 23 (1) ◽  
pp. 67-81 ◽  
Author(s):  
Stephanie Heupel ◽  
Birgit Roser ◽  
Hannah Kuhn ◽  
Marc-Henri Lebrun ◽  
Francois Villalba ◽  
...  

Comparative analyses of genome sequences from several plant-infecting fungi have shown conservation and expansion of protein families with plant disease-related functions. Here, we show that this hypothesis can be extended to mutualistic symbiotic fungi. We have identified a gene encoding an Era (Escherichia coli Ras)-like GTPase in the rice blast fungus Magnaporthe oryzae and found that it is orthologous to the mature amino terminal part of the Gin1 protein from the arbuscular mycorrhizal (AM) fungus Glomus intraradices. M. oryzae Erl1 is required for full root virulence. Appressoria formation was not severely affected in Δerl1 strains, but invasive hyphae grew slower than in the wild type. Root browning defect of Δerl1 strains could be complemented by the AM gene under the control of the ERL1 promoter. Erl1 and Gin-N localized to the nucleus when carboxy-terminally labeled with green fluorescent protein (GFP). However, amino-terminal GFP-tagged versions of the proteins expressed in Aspergillus nidulans were shown to localize in the cytoplasm and to cause polarity defects. These data suggest that Erl1 and Gin-N are orthologs and might be involved in the control of hyphal growth in planta. This is the first characterization of an Era-like GTPase in filamentous fungi.


1999 ◽  
Vol 112 (1) ◽  
pp. 111-125 ◽  
Author(s):  
M.R. Amieva ◽  
P. Litman ◽  
L. Huang ◽  
E. Ichimaru ◽  
H. Furthmayr

Lamellipodia, filopodia, microspikes and retraction fibers are characteristic features of a dynamic and continuously changing cell surface architecture and moesin, ezrin and radixin are thought to function in these microextensions as reversible links between plasma membrane proteins and actin microfilaments. Full-length and truncated domains of the three proteins were fused to green fluorescent protein (GFP), expressed in NIH3T3 cells, and distribution and behaviour of cells were analysed by using digitally enhanced differential interference contrast (DIC) and fluorescence video microscopy. The amino-terminal (N-)domains of all three proteins localize to the plasma membrane and fluorescence recordings parallel the dynamic changes in cell surface morphology observed by DIC microscopy of cultured cells. Expression of this domain, however, significantly affects cell surface architecture by the formation of abnormally long and fragile filopodia that poorly attach and retract abnormally. Even more striking are abundant irregular, branched and motionless membraneous structures that accumulate during retraction of lamellipodia. These are devoid of actin, endogenous moesin, ezrin and radixin, but contain the GFP-labeled domain. While a large proportion of endogenous proteins can be extracted with non-ionic detergents as in untransfected control cells, >90% of N-moesin and >60% of N-ezrin and N-radixin remain insoluble. The minimal size of the domain of moesin required for membrane localization and change in behavior includes residues 1–320. Deletions of amino acid residues from either end result in diffuse intracellular distribution, but also in normal cell behavior. Expression of GFP-fusions of full-length moesin or its carboxy-terminal domain has no effect on cell behavior during the observation period of 6–8 hours. The data suggest that, in the absence of the carboxy-terminal domain, N-moesin, -ezrin and -radixin interact tightly with the plasma membrane and interfere with normal functions of endogeneous proteins mainly during retraction.


2003 ◽  
Vol 284 (6) ◽  
pp. C1633-C1644 ◽  
Author(s):  
Mohammed A. Khadeer ◽  
Zhihui Tang ◽  
Harriet S. Tenenhouse ◽  
Maribeth V. Eiden ◽  
Heini Murer ◽  
...  

We previously demonstrated that inhibition of Na-dependent phosphate (Pi) transport in osteoclasts led to reduced ATP levels and diminished bone resorption. These findings suggested that Na/Picotransporters in the osteoclast plasma membrane provide Pifor ATP synthesis and that the osteoclast may utilize part of the Pireleased from bone resorption for this purpose. The present study was undertaken to define the cellular localization of Na/Picotransporters in the mouse osteoclast and to identify the proteins with which they interact. Using glutathione S-transferase (GST) fusion constructs, we demonstrate that the type IIa Na/Picotransporter (Npt2a) in osteoclast lysates interacts with the Na/H exchanger regulatory factor, NHERF-1, a PDZ protein that is essential for the regulation of various membrane transporters. In addition, NHERF-1 in osteoclast lysates interacts with Npt2a in spite of deletion of a putative PDZ-binding domain within the carboxy terminus of Npt2a. In contrast, deletion of the carboxy-terminal TRL amino acid motif of Npt2a significantly reduced its interaction with NHERF-1 in kidney lysates. Studies in osteoclasts transfected with green fluorescent protein-Npt2a constructs indicated that Npt2a colocalizes with NHERF-1 and actin at or near the plasma membrane of the osteoclast and associates with ezrin, a linker protein associated with the actin cytoskeleton, likely via NHERF-1. Furthermore, we demonstrate by RT/PCR of osteoclast RNA and in situ hybridization that the type III Na/Picotransporter, PiT-1, is also expressed in mouse osteoclasts. To examine the cellular distribution of PiT-1, we infected mouse osteoclasts with a retroviral vector encoding PiT-1 fused to an epitope tag. PiT-1 colocalizes with actin and is present on the basolateral membrane of the polarized osteoclast, similar to that previously reported for Npt2a. Taken together, our data suggest that association of Npt2a with NHERF-1, ezrin, and actin, and of PiT-1 with actin, may be responsible for membrane sorting and regulation of these Na/Picotransporters in the osteoclast.


2004 ◽  
Vol 78 (4) ◽  
pp. 1657-1664 ◽  
Author(s):  
Ngan Lam ◽  
Mark L. Sandberg ◽  
Bill Sugden

ABSTRACT LMP1 is an Epstein-Barr virus (EBV)-encoded membrane protein essential for the proliferation of EBV-infected lymphoblasts (E. Kilger, A. Kieser, M. Baumann, and W. Hammerschmidt, EMBO J. 17:1700-1709, 1998). LMP1 also inhibits gene expression and induces cytostasis in transfected cells when it is expressed at levels as little as twofold higher than the average for EBV-positive lymphoblasts (M. Sandberg, A. Kaykas, and B. Sugden, J. Virol. 74:9755-9761, 2000; A. Kaykas and B. Sugden, Oncogene 19:1400-1410, 2000). We have found that in three different clones of EBV-infected lymphoblasts the levels of expression of LMP1 in individual cells in each clone ranged over 100-fold. This difference is due to a difference in levels of the LMP1 transcript. In these clones, cells expressing high levels of LMP1 incorporated less BrdU. We also found that induction of expression of LMP1 or of a derivative of LMP1 with its transmembrane domain fused to green fluorescent protein instead of its carboxy-terminal signaling domain resulted in phosphorylation of eIF2α in EBV-negative Burkitt's lymphoma cells. This induction of phosphorylation of eIF2α was also detected in EBV-infected lymphoblasts, in which high levels of LMP1 correlated with high levels of phosphorylation of eIF2α. Our results indicate that inhibition of gene expression and of cell proliferation by LMP1 occurs normally in EBV-infected cells.


2004 ◽  
Vol 286 (3) ◽  
pp. L506-L513 ◽  
Author(s):  
Christopher E. Helt ◽  
Rhonda J. Staversky ◽  
Yi-Jang Lee ◽  
Robert A. Bambara ◽  
Peter C. Keng ◽  
...  

This study investigates molecular mechanisms underlying cell cycle arrest when cells are exposed to high levels of oxygen (hyperoxia). Hyperoxia has previously been shown to increase expression of the cell cycle regulators p53 and p21. In the current study, we found that p53-deficient human lung adenocarcinoma H1299 cells failed to induce p21 or growth arrest in G1 when exposed to 95% oxygen. Instead, cells arrested in S and G2. Stable expression of p53 restored induction of p21 and G1 arrest without affecting mRNA expression of the other Cip or INK4 G1 kinase inhibitors. To confirm the role of p21 in G1 arrest, we created H1299 cells with tetracycline-inducible expression of enhanced green fluorescent protein (EGFP), EGFP fused to p21 (EGFp21), or EGFP fused to p27 (EGFp27), a related cell cycle inhibitor. The amino terminus of p21 and p27 bind cyclin-dependent kinases (Cdk), whereas the carboxy terminus of p21 binds the sliding clamp proliferating cell nuclear antigen (PCNA). EGFp21 or EGFp27, but not EGFP by itself, restored G1 arrest during hyperoxia. When separately overexpressed, the amino-terminal Cdk and carboxy-terminal PCNA binding domains of p21 each prevented cells from exiting G1 during exposure. These findings demonstrate that exposure in vitro to hyperoxia exerts G1 arrest through p53-dependent induction of p21 that suppresses Cdk and PCNA activity. Because PCNA also participates in DNA repair, these results raise the possibility that p21 also affects repair of oxidized DNA.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Catherine P. Chia ◽  
Noriko Inoguchi ◽  
Kyle C. Varon ◽  
Bradley M. Bartholomai ◽  
Hideaki Moriyama

Abstract Objective The nuclear and mitochondrial genomes of Dictyostelium discoideum, a unicellular eukaryote, have relatively high A+T-contents of 77.5% and 72.65%, respectively. To begin to investigate how the pyrimidine biosynthetic pathway fulfills the demand for dTTP, we determined the catalytic properties and structure of the key enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) that hydrolyzes dUTP to dUMP, the precursor of dTTP. Results The annotated genome of D. discoideum identifies a gene encoding a polypeptide containing the five conserved motifs of homotrimeric dUTPases. Recombinant proteins, comprised of either full-length or core polypeptides with all conserved motifs but lacking residues 1-37 of the N-terminus, were active dUTPases. Crystallographic analyses of the core enzyme indicated that the C-termini, normally flexible, were constrained by interactions with the shortened N-termini that arose from the loss of residues 1-37. This allowed greater access of dUTP to active sites, resulting in enhanced catalytic parameters. A tagged protein comprised of the N-terminal forty amino acids of dUTPase fused to green fluorescent protein (GFP) was expressed in D. discoideum cells. Supporting a prediction of mitochondrial targeting information within the N-terminus, localization and subcellular fractionation studies showed GFP to be in mitochondria. N-terminal sequencing of immunoprecipitated GFP revealed the loss of the dUTPase sequence upon import into the organelle.


2005 ◽  
Vol 79 (10) ◽  
pp. 6194-6206 ◽  
Author(s):  
Teresa J. Broering ◽  
Michelle M. Arnold ◽  
Cathy L. Miller ◽  
Jessica A. Hurt ◽  
Patricia L. Joyce ◽  
...  

ABSTRACT Mammalian orthoreoviruses are believed to replicate in distinctive, cytoplasmic inclusion bodies, commonly called viral factories or viroplasms. The viral nonstructural protein μNS has been implicated in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly. In this study, we sought to identify the regions of μNS that are involved in forming factory-like inclusions in transfected cells in the absence of infection or other viral proteins. Sequences in the carboxyl-terminal one-third of the 721-residue μNS protein were linked to this activity. Deletion of as few as eight residues from the carboxyl terminus of μNS resulted in loss of inclusion formation, suggesting that some portion of these residues is required for the phenotype. A region spanning residues 471 to 721 of μNS was the smallest one shown to be sufficient for forming factory-like inclusions. The region from positions 471 to 721 (471-721 region) includes both of two previously predicted coiled-coil segments in μNS, suggesting that one or both of these segments may also be required for inclusion formation. Deletion of the more amino-terminal one of the two predicted coiled-coil segments from the 471-721 region resulted in loss of the phenotype, although replacement of this segment with Aequorea victoria green fluorescent protein, which is known to weakly dimerize, largely restored inclusion formation. Sequences between the two predicted coiled-coil segments were also required for forming factory-like inclusions, and mutation of either one His residue (His570) or one Cys residue (Cys572) within these sequences disrupted the phenotype. The His and Cys residues are part of a small consensus motif that is conserved across μNS homologs from avian orthoreoviruses and aquareoviruses, suggesting this motif may have a common function in these related viruses. The inclusion-forming 471-721 region of μNS was shown to provide a useful platform for the presentation of peptides for studies of protein-protein association through colocalization to factory-like inclusions in transfected cells.


2007 ◽  
Vol 74 (3) ◽  
pp. 653-659 ◽  
Author(s):  
Harry B. Hines ◽  
Alexander D. Kim ◽  
Robert G. Stafford ◽  
Shirin S. Badie ◽  
Ernst E. Brueggeman ◽  
...  

ABSTRACT The seven serotypes of botulinum neurotoxin (BoNTs) are zinc metalloproteases that cleave and inactivate proteins critical for neurotransmission. The synaptosomal protein of 25 kDa (SNAP-25) is cleaved by BoNTs A, C, and E, while vesicle-associated membrane protein (VAMP) is the substrate for BoNTs B, D, F, and G. BoNTs not only are medically useful drugs but also are potential bioterrorist and biowarfare threat agents. Because BoNT protease activity is required for toxicity, inhibitors of that activity might be effective for antibotulinum therapy. To expedite inhibitor discovery, we constructed a hybrid gene encoding (from the N terminus to the C terminus, with respect to the expressed product) green fluorescent protein, then a SNAP-25 fragment encompassing residues Met-127 to Gly-206, and then VAMP residues Met-1 to Lys-94. Cysteine was added as the C terminus. The expressed product, which contained the protease cleavage sites for all seven botulinum serotypes, was purified and coupled covalently through the C-terminal sulfhydryl group to maleimide-activated 96-well plates. The substrate was readily cleaved by BoNTs A, B, D, E, and F. Using this assay and an automated 96-well pipettor, we screened 528 natural product extracts for inhibitors of BoNT A, B, and E protease activities. Serotype-specific inhibition was found in 30 extracts, while 5 others inhibited two serotypes.


2003 ◽  
Vol 69 (7) ◽  
pp. 4214-4218 ◽  
Author(s):  
J. Reunanen ◽  
P. E. J. Saris

ABSTRACT A plasmid coding for the nisin two-component regulatory proteins, NisK and NisR, was constructed; in this plasmid a gfp gene (encoding the green fluorescent protein) was placed under control of the nisin-inducible nisF promoter. The plasmid was transformed into non-nisin-producing Lactococcus lactis strain MG1614. The new strain could sense extracellular nisin and transduce it to green fluorescent protein fluorescence. The amount of fluorescence was dependent on the nisin concentration, and it could be measured easily. By using this strain, an assay for quantification of nisin was developed. With this method it was possible to measure as little as 2.5 ng of pure nisin per ml in culture supernatant, 45 ng of nisin per ml in milk, 0.9 μg of nisin in cheese, and 1 μg of nisin per ml in salad dressings.


2009 ◽  
Vol 75 (12) ◽  
pp. 4221-4223 ◽  
Author(s):  
Xuehong Qiu ◽  
Richou Han ◽  
Xun Yan ◽  
Mingxing Liu ◽  
Li Cao ◽  
...  

ABSTRACT Photorhabdus luminescens subsp. akhurstii LN2 from Heterorhabditis indica LN2 showed nematicidal activity against axenic Heterorhabditis bacteriophora H06 infective juveniles (IJs). Transposon mutagenesis identified an LN2 mutant that supports the growth of H06 nematodes. Tn5 disrupted the namA gene, encoding a novel 364-residue protein and involving the nematicidal activity. The green fluorescent protein-labeled namA mutant was unable to colonize the intestines of H06 IJs.


Sign in / Sign up

Export Citation Format

Share Document