scholarly journals Toxic-Metabolite-Producing Bacteria and Fungus in an Indoor Environment

2001 ◽  
Vol 67 (7) ◽  
pp. 3269-3274 ◽  
Author(s):  
J. Peltola ◽  
M. A. Andersson ◽  
T. Haahtela ◽  
H. Mussalo-Rauhamaa ◽  
F. A. Rainey ◽  
...  

ABSTRACT Toxic-metabolite-emitting microbes were isolated from the indoor environment of a building where the occupant was suffering serious building-related ill-health symptoms. Toxic substances soluble in methanol and inhibitory to spermatozoa at <10 μg (dry weight) ml−1 were found from six bacterial isolates and one fungus. The substances from isolates of Bacillus simplexand from isolates belonging to the actinobacterial generaStreptomyces and Nocardiopsis were mitochondriotoxic. These substances dissipated the mitochondrial membrane potential (Δψ) of boar spermatozoa. The substances from the Streptomyces isolates also swelled the mitochondria. The substances from isolates of Trichoderma harzianum Rifai and Bacillus pumilus damaged the cell membrane barrier function of sperm cells.

2001 ◽  
Vol 67 (9) ◽  
pp. 4293-4304 ◽  
Author(s):  
Joanna S. P. Peltola ◽  
Maria A. Andersson ◽  
Peter Kämpfer ◽  
Georg Auling ◽  
Reiner M. Kroppenstedt ◽  
...  

ABSTRACT Nocardiopsis strains were isolated from water-damaged indoor environments. Two strains (N. alba subsp.alba 704a and a strain representing a novel species, ES10.1) as well as strains of N. prasina, N. lucentensis,and N. tropica produced methanol-soluble toxins that paralyzed the motility of boar spermatozoa at <30 μg of crude extract (dry weight) ml−1. N. prasina, N. lucentensis, N. tropica, and strain ES10.1 caused cessation of motility by dissipating the mitochondrial membrane potential, Δψ, of the boar spermatozoa. Indoor strain 704a produced a substance that destroyed cell membrane barrier function and depleted the sperm cells of ATP. Indoor strain 64/93 was antagonistic towardsCorynebacterium renale. Two indoor Nocardiopsisstrains were xerotolerant, and all five utilized a wide range of substrates. This combined with the production of toxic substances suggests good survival and potential hazard to human health in water-damaged indoor environments. Two new species, Nocardiopsis exhalans sp. nov. (ES10.1T) and Nocardiopsis umidischolae sp. nov. (66/93T), are proposed based on morphology, chemotaxonomic and physiological characters, phylogenetic analysis, and DNA-DNA reassociations.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


2002 ◽  
Vol 22 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Yoshihide Tsujimoto

An increase in the permeability of outer mitochondrial membrane is central to apoptotic cell death, and results in the release of several apoptogenic factors such as cytochrome c into the cytoplasm to activate downstream destructive programs. The voltage-dependent anion channel (VDAC or mitochondrial porin) plays an essential role in disrupting the mitochondrial membrane barrier and is regulated directly by members of the Bcl-2 family proteins. Anti-apoptotic Bcl-2 family members interact with and close the VDAC, whereas some, but not all, proapoptotic members interact with VDAC to open protein-conducting pore through which apoptogenic factors pass. Although the VDAC is involved directly in breaking the mitochondrial membrane barrier and is a known component of the permeability transition pore complex, VDAC-dependent increase in outer membrane permeability can be independent of the permeability transition event such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. VDAC interacts not only with Bcl-2 family members but also with proteins such as gelsolin, an actin regulatory protein, and appears to be a convergence point for a variety of cell survival and cell death signals.


Author(s):  
Ashwini S. Kaware ◽  
Pramod U Ingle ◽  
Aniket K. Gade ◽  
Mahendra Rai

Introduction: Alternaria spp. and Candida spp. are the main fungal pathogen of indoor environment like house, office, classroom, etc. These may cause various diseases and infections like systemic infections, or chronic asthma in immunocompromised individuals through secretion of various toxic substances. Chemical-based commercially available room fresheners used to control the fungal load of indoor environment are not beneficial to human health. Objective: was to provide viable alternative in the form of nanoparticle-based approach for the management of air-borne fungi. Methodology: The present study primarily focuses on the isolation, microscopic and biochemical identification of indoor fungi; Azadirachta indica-mediated sulphur nanoparticles (SNPs) synthesis, their detection and characterization; and in vitro assessment of SNPs against isolated fungi present in indoor environment. Result: The isolated fungi were identified as Alternaria spp and Candida spp. The SNPs showed absorbance maxima at 291 nm. NTA analysis showed average size of 188.4 nm, and zeta potential of -4.94 mV which represented synthesis of stable SNPs. XRD pattern confirmed the face centered cubic, crystalline nature of SNPs. FTIR spectrum depicted the presence of polyhydroxyl, nitrile, keto, aromatic and carboxylic compounds which stabilized the SNPs. The antifungal assays demonstrated the significant activity of the formulated SNPs and eucalyptus oil infused air freshener. Conclusion: It can be concluded that A. indica-mediated SNPs can be applied in the formulation and manufacture of an ecofriendly air freshener for the management of indoor fungal pathogens like Alternaria spp. and Candida spp.


2020 ◽  
Vol 14 (2) ◽  
pp. 178-186
Author(s):  
Lisa Novita Arios ◽  
Dwi Suryanto . ◽  
Kiki Nurtjahja . ◽  
Erman Munir .

Assay on ability of endophytic bacteria isolated from peanut to inhibit Sclerotium sp. growth in peanut seedlings.   A study on assay of ability of endophytic bacteria to inhibit Sclerotium sp. in peanut seedling has been done. The bacteria were isolated from peanut healthy plants, while Sclerotium sp. was isolated from infected peanaut plant. Antagonistic assay was conducted by dual culture method.  In vivo assay of inhibiting Sclerotium sp. was conducted by dipping peanut seed in bacterial solution, and planting the seed in soil:compost (3:1) growing media. Six endophytic bacterial isolates showed to inhibit the growth of Sclerotium sp. in vitro. LN1 seemed to inhibit more of Sclerotium sp., while LN5 showed to inhibit less. Two potential isolates LN1 of gram-negative and LN2 of gram-positive using for further study showed to decrease more of dumping off. It also seemed that the isolates increased the seedling height, number of leaves, and dry weight.


FEBS Letters ◽  
1998 ◽  
Vol 427 (2) ◽  
pp. 198-202 ◽  
Author(s):  
Isabel Marzo ◽  
Santos A Susin ◽  
Patrice X Petit ◽  
Luigi Ravagnan ◽  
Catherine Brenner ◽  
...  

1998 ◽  
Vol 64 (12) ◽  
pp. 4767-4773 ◽  
Author(s):  
M. A. Andersson ◽  
R. Mikkola ◽  
R. M. Kroppenstedt ◽  
F. A. Rainey ◽  
J. Peltola ◽  
...  

ABSTRACT Actinomycete isolates from indoor air and dust in water-damaged schools and children’s day care centers were tested for toxicity by using boar spermatozoa as an indicator. Toxicity was detected in extracts of four strains which caused a loss of sperm motility, and the 50% effective concentrations (EC50) were 10 to 63 ng (dry weight) ml of extended boar semen−1. The four strains were identified as Streptomyces griseus strains by 16S ribosomal DNA and chemotaxonomic methods. The four S. griseus strains had similar effects on sperm cells, including loss of motility and swelling of mitochondria, but we observed no loss of plasma membrane integrity or depletion of cellular ATP. None of the effects was observed with sperm cells exposed to extracts of other indoor actinomycete isolates at concentrations of ≥5,000 to 72,000 ng ml−1. The toxin was purified from all four strains and was identified as a dodecadepsipeptide, and the fragmentation pattern obtained by tandem mass spectrometry was identical to that of valinomycin. Commercial valinomycin had effects in sperm cells that were identical to the effects of the four indoor isolates of S. griseus. The EC50 of purified toxin from the S. griseus strains were 1 to 3 ng ml of extended boar semen−1, and the EC50 of commercial valinomycin was 2 ng ml of extended boar semen−1. To our knowledge, this is the first report of the presence of ionophoric toxin producers in an indoor environment and the first report of valinomycin-producing strains identified as S. griseus.


2007 ◽  
Vol 146 (1) ◽  
pp. 49-56 ◽  
Author(s):  
T. YAO ◽  
S. YASMIN ◽  
F. Y. HAFEEZ

SUMMARYThe present investigation was designed to assess the range of growth-promoting activities of various rhizosphere bacteria on wheat and oat growing in Lanzhou, China. Detection of the N-fixing bacteria by the acetylene reduction assay-based most probable number (ARA-based MPN) method indicated the presence of significant numbers of N-fixing rhizobacteria, i.e. 5·8×106bacteria/g dry weight of root in association with Chinese wheat varietyV4. A total of 24 rhizobacteria was isolated from wheat and oat grown in Lanzhou, China. These bacterial isolates were studied for growth characteristics, nitrogen fixation, phosphate solubilization and indole acetic acid (IAA) production. All the isolates were motile and gram negative. Acetylene reduction activity was detected in all isolates ranging from 124·6 to 651·6 nmol C2H2reduced/h/vial while almost all isolates produced IAA ranging from 0·2 to 5·1 μg/ml. Only two isolates, ChW1 and ChW6, formed clear zones on Pikovskaia's medium, showing the ability to solubilize phosphates. ChW1 and ChW6 were used to develop fluorescent antibodies to check the cross reactivity of the isolates. Inoculation of these bacterial isolates resulted in higher plant biomass, root area and total N content on Chinese wheat varietyNingchun 2and Pakistani oat varietySwanunder controlled conditions. Among the wheat isolates, ChW5 was the best in promoting wheat growth by increasing its root length, root area, shoot dry weight and total N content. Among oat isolates, ChO3, ChO5 and ChO6 showed significant effects on different growth parameters of their host plants. Using the15N isotope dilution method, the highest N fixation contribution (0·73 of total plant N) was observed in the wheat plants inoculated with isolate ChW5. Random amplified polymorphic DNA (RAPD) analysis of seven selected isolates showed that the variation within the isolates from different host crops grown in the same soil was quite large and helpful not only in defining the bacterial strains associated with different host crops but also in defining the distances of isolates from standard strains of rhizobacteria used. In conclusion, the present results indicate that the selected bacterial isolates did promote the growth of wheat and oat in ways that could be harnessed to practical benefit for the farmer and consistent with sustainable agricultural practices in China.


2019 ◽  
Vol 20 (1) ◽  
pp. 35
Author(s):  
Eny Ida Riyanti ◽  
Dwi Ningsih Susilowati ◽  
Karden Mulya ◽  
Edy Listanto

<p class="keyword">Soil bacteria have important roles in biogeochemical cycle for soil fertility and have been manipulated for ecologically-friendly crop production.  The search for beneficial association between microbes and plants for promoting growth and health should be studied for tomato growth improvement. The study aimed to  evaluate 19 microbial isolates which produced indole acetic acid (IAA) affecting growth and development of tomato (Palupi variety), and  molecularly identify the most effective isolates in improving tomato growth based on 16s rDNA sequences. The experiment was conducted in pots using a complete randomized design with three replications. The parameters observed included plant height, plant dry weight, root length, root dry weight, and fruit fresh weight.  The isolates that significantly improved tomato growth were molecularly identified using 16s rRNA sequence. The phenotypic properties such as IAA content and phosphate solubilizing index (PI) of the superior isolates were determined. Results showed that the application of bacterial isolates on tomato significantly increased plant dry weight and fruit yield. From 19 isolates tested, Aj 3.7.1.14 significantly increased plant dry weight, root length, and fruit yield. This isolate produced IAA of about 14.77 ppm and PI of 1.86.  Molecular analysis on Aj 3.7.1.14 demonstrated that the isolate had 89% similarity to <em>Pseudomonas fragi</em>. The identified <em>P. fragi</em> was found to be the most effective isolate for improving tomato growth and fruit yield. Another isolate, <em>Bacillus amyloliquefaciens</em> was found to promote root length, root dry weight, and fruit yield. These isolates are potential to be further investigated for field trials</p>


Sign in / Sign up

Export Citation Format

Share Document