scholarly journals Isomaltulose Synthase from Klebsiella sp. Strain LX3: Gene Cloning and Characterization and Engineering of Thermostability

2002 ◽  
Vol 68 (6) ◽  
pp. 2676-2682 ◽  
Author(s):  
Daohai Zhang ◽  
Xianzhen Li ◽  
Lian-Hui Zhang

ABSTRACT The gene (palI) encoding isomaltulose synthase (PalI) from a soil bacterial isolate, Klebsiella sp. strain LX3, was cloned and characterized. PalI converts sucrose into isomaltulose, trehalulose, and trace amounts of glucose and fructose. Sequence domain analysis showed that PalI contains an α-amylase domain and (β/α)8-barrel structures, suggesting that it belongs to the α-amylase family. Sequence alignment indicated that the five amino acid residues of catalytic importance in α-amylases and glucosyltransferases (Asp241, Glu295, Asp369, His145, and His368) are conserved in PalI. Purified recombinant PalI displayed high catalytic efficiency, with a Km of 54.6 ± 1.7 mM for sucrose, and maximum activity (approximately 328.0 ± 2.5 U/mg) at pH 6.0 and 35°C. PalI activity was strongly inhibited by Fe3+ and Hg2+ and was enhanced by Mn2+ and Mg2+. The half-life of PalI was 1.8 min at 50°C. Replacement of selected amino acid residues by proline significantly increased the thermostability of PalI. Simultaneous replacement of Glu498 and Arg310 with proline resulted in an 11-fold increase in the half-life of PalI at 50°C.

Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Vadim M. Gumerov ◽  
Andrey L. Rakitin ◽  
Andrey V. Mardanov ◽  
Nikolai V. Ravin

We expressed a putativeβ-galactosidase Asac_1390 from hyperthermophilic crenarchaeonAcidilobus saccharovoransinEscherichia coliand purified the recombinant enzyme. Asac_1390 is composed of 490 amino acid residues and showed high sequence similarity to family 1 glycoside hydrolases from various thermophilic Crenarchaeota. The maximum activity was observed at pH 6.0 and 93°C. The half-life of the enzyme at 90°C was about 7 hours. Asac_1390 displayed high tolerance to glucose and exhibits hydrolytic activity towards cellobiose and various aryl glucosides. The hydrolytic activity withp-nitrophenyl (pNP) substrates followed the order pNP-β-D-galactopyranoside (328 U mg−1), pNP-β-D-glucopyranoside (246 U mg−1), pNP-β-D-xylopyranoside (72 U mg−1), and pNP-β-D-mannopyranoside (28 U mg−1). Thus the enzyme was actually a multifunctionalβ-glycosidase. Therefore, the utilization of Asac_1390 may contribute to facilitating the efficient degradation of lignocellulosic biomass and help enhance bioconversion processes.


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


1990 ◽  
Vol 259 (1) ◽  
pp. G93-G98 ◽  
Author(s):  
R. Eliakim ◽  
S. Seetharam ◽  
C. C. Tietze ◽  
D. H. Alpers

A cDNA probe encoding the entire structural region of the 62-kDa rat intestinal alkaline phosphatase from amino acid residues 1 to 531 detected multiple mRNA species (3.0, 2.7, and 2.2 kb) in rat intestinal RNA. The 3.0-kb species was most evident in duodenum but could be easily detected in jejunum using a 48-mer oligonucleotide encoding amino acid residues 492-508. This 48-mer oligonucleotide bound preferentially to the 3.0-kb mRNA, suggesting that the 2.7-kb mRNA differed in this region. To determine whether each of the mRNAs encoding rat intestinal alkaline phosphatase responded coordinately to physiological stimuli, the full-length cDNA and the 48-mer oligonucleotide were used as probes for the 2.7- and 2.2-kb and the 3.0-kb mRNAs, respectively. Intestinal mRNA concentration was measured by Northern blot analysis in acute (single feed, 17 kcal) and chronic (3 wk, 30% fat diet) fat feeding and in rachitic rats after 1,25-dihydroxyvitamin D3 therapy. There was a large increase (8- to 25-fold) in the 3.0-kb mRNA 7 h after acute fat feeding, with a much smaller increase (1.4- to 5.0-fold) in the 2.7- and 2.2-kb species. The peak in 3.0-kb mRNA accumulation correlated in time with the maximal activity of serum phosphatase activity after acute fat feeding (4- to 5-fold increase). In contrast, there was a much smaller increase in all mRNAs and in tissue and serum enzyme activity after chronic fat feeding.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 14 (3) ◽  
pp. 497-504
Author(s):  
Carlo Canepa

AbstractThis work investigates the consequences on the diverse number of chemical species in a pre-biotic terrestrial aqueous environment endowed with an amino acid source induced by the spontaneous build-up of catalytically active polypeptides from amino acid monomers. The assumed probability that a randomly formed polypeptide exhibits catalytic properties is dependent on constraining both the chemical identity and the position of a fraction of the amino acid residues. Within this hypothesis, and using values of the average length n of the catalytic polypeptides about one half of the present-day enzymes, the stationary-state concentration of the catalytically active polypeptides is ≈10−30 −10−19 M, and the ratio of the concentration of a product of a catalytic process to the initial concentration of the corresponding substrate is predicted to be ≈10−6−105. Matching the mean life of each catalytic polypeptide to the mean life of its substrate (λ ≈ ω) is only possible by significantly raising the intensity of the source of the amino acid monomers. Under these hypothetical optimal conditions, the mean lives of the catalytic polypeptides and their substrates have values ω−1 ≈ λ−1 ≈10 yr and the asymptotic concentration of each product is of the same order of magnitude as the concentration of the substrate. In all cases the catalytic efficiency necessary to form the active peptides takes the typical values of present-day enzymes.


1995 ◽  
Vol 308 (3) ◽  
pp. 955-964 ◽  
Author(s):  
A M Kachurin ◽  
A M Golubev ◽  
M M Geisow ◽  
O S Veselkina ◽  
L S Isaeva-Ivanova ◽  
...  

alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide.


2019 ◽  
Vol 167 (3) ◽  
pp. 333-341
Author(s):  
Hisashi Muramatsu ◽  
Haruna Miyaoku ◽  
Syuya Kurita ◽  
Hidenori Matsuo ◽  
Takehiro Kashiwagi ◽  
...  

Abstract A novel enzyme, thiourocanate hydratase, which catalyses the conversion of thiourocanic acid to 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid, was isolated from the ergothioneine-utilizing strain, Burkholderia sp. HME13. When the HME13 cells were cultured in medium containing ergothioneine as the sole nitrogen source, thiourocanate-metabolizing activity was detected in the crude extract from the cells. However, activity was not detected in the crude extract from HME13 cells that were cultured in Luria-Bertani medium. The gene encoding thiourocanate hydratase was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. The enzyme showed maximum activity at pH 7.5 and 55°C and was stable between pH 5.0 and 10.5, and at temperatures up to 45°C. The Km and Vmax values of thiourocanate hydratase towards thiourocanic acid were 30 μM and 7.1 μmol/min/mg, respectively. The enzyme was strongly inhibited by CuCl2 and HgCl2. The amino acid sequence of the enzyme showed 46% identity to urocanase from Pseudomonas putida, but thiourocanate hydratase had no urocanase activity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1027-1027
Author(s):  
Melissa A. Blum ◽  
Tivadar Orban ◽  
Daniel O. Beck ◽  
Michael Kalafatis

Abstract The prothrombinase complex, composed of the enzyme factor Xa, the cofactor factor Va, and the substrate prothrombin associated on a cell surface in the presence of divalent metal ions, catalyzes the activation of prothrombin to thrombin 300,000-fold more effectively than the enzyme, factor Xa, alone. We have demonstrated that amino acids E323, Y324 and E330, V331 are binding sites for factor Xa on the factor Va heavy chain and are required for coordinating the spatial arrangement of enzyme and substrate directing prothrombin cleavage at two spatially distinct sites. We have also demonstrated that amino acid region 332–336 contains residues that are involved in cofactor function. Peptide studies have identified amino acid residues 334DY335 as major participants in factor Va cofactor activity. We have employed site-directed mutagenesis to study the effect of these amino acids on the catalytic efficiency of prothrombinase. Recombinant factor V molecules with the mutations D334K and Y335F, designated factor VKF, and D334A and Y335A, designated factor VAA were produced, transiently transfected, expressed in COS7L cells, and purified. Kinetic studies demonstrate that while factor VaKF has a KD for factor Xa similar to the KD observed for wild type factor Va, the kcat of prothrombinase assembled with factor VaKF has approximately a 1.5-fold decreased value compared to kcat of prothrombinase assembled with the wild type cofactor molecule. On the contrary, prothrombinase assembled with factor VaAA was found to have a nearly 10-fold decrease kcat, compared to prothrombinase assembled with wild type factor Va. This data suggest that not all amino acid substitutions are well tolerated at positions 334–335. Analysis of the sequence 323–340 using the recently published completed model of coagulation factor Va (pdb entry 1Y61) revealed that amino acids 334–335 are located at the end of a beta-sheet. To ascertain the importance of these mutants and their contribution to cofactor activity we have combined the mutations of amino acids 334–335 with mutations at amino acids 323–324 (E323F, Y324F) and 330–331 (E330M, V331I). We thus created quadruple mutants resulting in recombinant factor VFF/KF, factor VFF/AA, factor VMI/KF and factor VMI/AA. These molecules were transiently expressed in COS-7L cells and studied for their ability to be incorporated into prothrombinase. Free energies associated with the catalytic efficiencies of prothrombinase assembled with each mutant were also calculated (ΔΔGint). The ΔΔGint of interaction for the double mutants, factor VaFF/KF and factor VaMI/KF, had positive values indicating that the side chains of amino acids 330EV331, 323EY324 and 334DY335 located in and around the factor Xa binding site interact in a synergistic manner resulting in the destabilization of the transition state complex and a decelerated rate of catalysis. Conversely, combining the factor Xa binding site mutants with recombinant factor VaAA result in ΔΔGint values of approximately zero. In conclusion, the data demonstrate that replacement of amino acids 334–335 by two hydrophilic residues results in decreased cofactor function. In contrast, replacement of these amino acids by two small hydrophobic residues do not appear to be well tolerated by the cofactor resulting in severely impaired cofactor activity. Altogether, these data demonstrate the importance of amino acid residues D334 and Y335 for the rearrangement of enzyme and substrate required for efficient catalysis.


2002 ◽  
Vol 76 (2) ◽  
pp. 473-483 ◽  
Author(s):  
Tatineni Satyanarayana ◽  
Siddarame Gowda ◽  
María A. Ayllón ◽  
María R. Albiach-Martí ◽  
Shailaja Rabindran ◽  
...  

ABSTRACT Citrus tristeza virus (CTV), a member of the Closteroviridae, has a 19.3-kb positive-stranded RNA genome that is organized into 12 open reading frames (ORFs) with the 10 3′ genes expressed via a nested set of nine or ten 3′-coterminal subgenomic mRNAs (sgRNAs). Relatively large amounts of negative-stranded RNAs complementary to both genomic and sgRNAs accumulate in infected cells. As is characteristic of RNA viruses, wild-type CTV produced more positive than negative strands, with the plus-to-minus ratios of genomic and sgRNAs estimated at 10 to 20:1 and 40 to 50:1, respectively. However, a mutant with all of the 3′ genes deleted replicated efficiently, but produced plus to minus strands at a markedly decreased ratio of 1 to 2:1. Deletion analysis of 3′-end genes revealed that the p23 ORF was involved in asymmetric RNA accumulation. A mutation which caused a frameshift after the fifth codon resulted in nearly symmetrical RNA accumulation, suggesting that the p23 protein, not a cis-acting element within the p23 ORF, controls asymmetric accumulation of CTV RNAs. Further in-frame deletion mutations in the p23 ORF suggested that amino acid residues 46 to 180, which contained RNA-binding and zinc finger domains, were indispensable for asymmetrical RNA accumulation, while the N-terminal 5 to 45 and C-terminal 181 to 209 amino acid residues were not absolutely required. Mutation of conserved cysteine residues to alanines in the zinc finger domain resulted in loss of activity of the p23 protein, suggesting involvement of the zinc finger in asymmetric RNA accumulation. The absence of p23 gene function was manifested by substantial increases in accumulation of negative-stranded RNAs and only modest decreases in positive-stranded RNAs. Moreover, the substantial decrease in the accumulation of negative-stranded coat protein (CP) sgRNA in the presence of the functional p23 gene resulted in a 12- to 15-fold increase in the expression of the CP gene. Apparently the excess negative-stranded sgRNA reduces the availability of the corresponding positive-stranded sgRNA as a messenger. Thus, the p23 protein controls asymmetric accumulation of CTV RNAs by downregulating negative-stranded RNA accumulation and indirectly increases expression of 3′ genes.


2008 ◽  
Vol 389 (1) ◽  
pp. 83-90 ◽  
Author(s):  
José Pfizer ◽  
Irmgard Assfalg-Machleidt ◽  
Werner Machleidt ◽  
Norbert Schaschke

Abstract The 27-mer peptide CP1B-[1–27] derived from exon 1B of calpastatin stands out among the known inhibitors for μ- and m-calpain due to its high potency and selectivity. By systematical truncation, a 20-mer peptide, CP1B-[4–23], was identified as the core sequence required to maintain the affinity/selectivity profile of CP1B-[1–27]. Starting with this peptide, the turn-like region Glu10(i)-Leu11(i+1)-Gly12(i+2)-Lys13(i+3) was investigated. Sequence alignment of subdomains 1B, 2B, 3B and 4B from different mammalians revealed that the amino acid residues in position i+1 and i+2 are almost invariably flanked by oppositely charged residues, pointing towards a turn-like conformation stabilized by salt bridge/H-bond interaction. Accordingly, using different combinations of acidic and basic residues in position i and i+3, a series of conformationally constrained variants of CP1B-[4–23] were synthesized by macrolactamization utilizing the side chain functionalities of these residues. With the combination of Glu(i)/Dab(i+3), the maximum of conformational rigidity without substantial loss in affinity/selectivity was reached. These results clearly demonstrate that the linear peptide chain corresponding to subdomain 1B reverses its direction in the region Glu10-Lys13 upon binding to μ-calpain, and thereby adopts a loop-like rather than a tight turn conformation at this site.


Sign in / Sign up

Export Citation Format

Share Document